Advance Search
Volume 45 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
Yue Huifang, Pang Hua, Gao Bo, Gao Shixin, Luo Qianqian, Zhao Yanli, Jiang Yourong. Effect of Fe+Cr and Si Contents on Corrosion Resistance of Zircaloy-4[J]. Nuclear Power Engineering, 2024, 45(3): 146-153. doi: 10.13832/j.jnpe.2024.03.0146
Citation: Yue Huifang, Pang Hua, Gao Bo, Gao Shixin, Luo Qianqian, Zhao Yanli, Jiang Yourong. Effect of Fe+Cr and Si Contents on Corrosion Resistance of Zircaloy-4[J]. Nuclear Power Engineering, 2024, 45(3): 146-153. doi: 10.13832/j.jnpe.2024.03.0146

Effect of Fe+Cr and Si Contents on Corrosion Resistance of Zircaloy-4

doi: 10.13832/j.jnpe.2024.03.0146
  • Received Date: 2023-11-08
  • Rev Recd Date: 2024-01-23
  • Publish Date: 2024-06-13
  • In order to optimize the corrosion resistance of domestic Zr-4 alloy, the effects of alloying element Fe+Cr and impurity element Si on the corrosion resistance of domestic Zr-4 alloy were studied under the accelerated corrosion condition of high temperature and high pressure steam at 420℃ and 10.3 MPa. The results show that within the range of Fe+Cr content specified by ASTM (0.28 wt%-0.37 wt%, with wt% representing mass percentage), the higher the Fe+Cr content, the larger the number and size of the precipitated second phases, which is beneficial to the improvement of the corrosion resistance of the material. When the content of Fe+Cr increases from 0.28 wt% to 0.37 wt%, the corrosion weight gain of Zr-4 alloy decreases by about 30% after 126 d of corrosion in steam at 420℃. When the Si content of Zr-4 alloy is as low as 10 mg/kg during quenching at 1100℃, the coarse parallel-plate structure is formed. When the Si content is increased to 100 mg/kg, the precipitated fine Zr3Si provides nucleation sites for α phase, which leads to the appearance of basketweave structure and fine parallel-plate structure in the microstructure. The basketweave structure can promote the distribution of the second phase in the structure to be more uniform and diffuse, so the Zr-4 alloy with high Si content shows better corrosion resistance.

     

  • loading
  • [1]
    LIU W Q, LI Q, ZHOU B X, et al. Effect of heat treatment on the microstructure and corrosion resistance of a Zr-Sn-Nb-Fe-Cr alloy[J]. Journal of Nuclear Materials, 2005, 341(2-3): 97-102. doi: 10.1016/j.jnucmat.2005.01.007
    [2]
    姚美意,邹玲红,谢兴飞,等. 添加Bi对Zr-4合金在400℃/10.3MPa过热蒸汽中耐腐蚀性能的影响[J]. 金属学报,2012, 48(9): 1097-1102.
    [3]
    李强,周邦新,姚美意,等. 锆合金在550℃,25MPa超临界水中的腐蚀行为[J]. 稀有金属材料与工程,2007, 36(8): 1358-1361.
    [4]
    朱伟,王桢,吴璐,等. 新锆合金不同热处理条件下第二相结构及成分变化研究[J]. 现代应用物理,2023, 14(1): 010801.
    [5]
    姚美意,周邦新,李强,等. 第二相对Zr-4合金在400℃过热蒸汽中腐蚀吸氢行为的影响[J]. 稀有金属材料与工程,2007, 36(11): 1915-1919. doi: 10.3321/j.issn:1002-185x.2007.11.008
    [6]
    王德鹏,李毅丰,梁雪,等. 压水堆燃料包壳锆合金中第二相的腐蚀行为研究进展[J]. 稀有金属材料与工程,2023, 52(2): 753-762.
    [7]
    周邦新. 改善锆合金耐腐蚀性能的概述[J]. 金属热处理学报,1997, 18(3): 8-15.
    [8]
    陈鑫,李中奎,周军,等. 合金元素对锆合金耐腐蚀性能的影响概述[J]. 热加工工艺,2015, 44(2): 14-16.
    [9]
    CHARQUET D. Influence of precipitate density on the nodular corrosion resistance of Zr-Sn-Fe-Cr alloys at 500℃[J]. Journal of Nuclear Materials, 2001, 288(2-3): 237-240. doi: 10.1016/S0022-3115(00)00728-5
    [10]
    栾佰峰,薛姣姣,柴林江,等. 冷却速率及杂质元素对锆合金β→α转变组织的影响[J]. 稀有金属材料与工程,2013, 42(12): 2636-2640.
    [11]
    刘琼,谢梦,李宇力,等. 浅析锆合金β淬火组织差异[J]. 有色金属加工,2021, 50(1): 32-35.
    [12]
    ÖKVIST G, KÄLLSTRÖM K. The effect of zirconium carbide on the β→α transformation structur in zircaloy[J]. Journal of Nuclear Materials, 1970, 35(3): 316-321. doi: 10.1016/0022-3115(70)90215-1
    [13]
    QUACH V, NORTHWOOD D O. Influence of the phosphorus impurity content on the microstructure of Zircaloy-4 air cooled from the high temperature beta phase region[J]. Metallography, 1984, 17(2): 191-201. doi: 10.1016/0026-0800(84)90022-3
    [14]
    QUACH V. The influence of the impurity content and cooling rate on the microstructure of Zircaloy-4 nuclear fuel cladding[D]. Windsor: University of Windsor, 1984.
    [15]
    FONG W L, NORTHWOOD D O. Microstructure-impurity content relationships in Zircaloy-4 nuclear fuel sheathing[C]//14th Annual Technical Meeting of the International Metallographic Society. San Francisco: Microstructural Science, 1982: 123-130.
    [16]
    ASTM International. Standard specification for wrought zirconium alloy seamless tubes for nuclear reactor fuel cladding: ASTM B811-13[S]. United States: ASTM International, 2022.
    [17]
    柴林江,栾佰峰,周宇,等. 锆合金第二相研究述评(Ⅰ): Zircaloys合金[J]. 中国有色金属学报,2012, 22(6): 1594-1604.
    [18]
    周邦新,李聪,黄德诚. Zr(Fe,Cr)2金属间化合物的氧化[J]. 核动力工程,1993, 14(2): 149-153, 190.
    [19]
    PÊCHEUR D. Oxidation of β-Nb and Zr(Fe, V)2 precipitates in oxide films formed on advanced Zr-based alloys[J]. Journal of Nuclear Materials, 2000, 278(2-3): 195-201. doi: 10.1016/S0022-3115(99)00253-6
    [20]
    杨忠波,赵文金. 锆合金耐腐蚀性能及氧化特性概述[J]. 材料导报,2010, 24(9): 120-125.
    [21]
    刘建章. 核结构材料[M]. 北京: 化学工业出版社,2007:26.
    [22]
    CHARQUET D, ALHERITIERE E. Influence of impurities and temperature on the microstructure of zircaloy-2 and zircaloy-4 after the Beta → Alpha phase transformation[M]//ADAMSON R B, VAN SWAM L F P. Zirconium in the Nuclear Industry. Philadelphia: ASTM, 1987: 284-291.
    [23]
    COX B, KRITSKY V, LEMAIGNAN C, et al. Waterside corrosion of zirconium alloys in nuclear power plants: IAEA-TECDOC-996[R]. Vienna: IAEA, 1998: 124.
    [24]
    SELL HJ, Trapp-Pritsching S, Garzarolli F. Effect of alloying elements and impurities on in-BWR corrosion of Zironium alloys[J]. Journal of ASTM International, 2006, 3(1):404-417.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (23) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return