Advance Search
Volume 45 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
Li Xingzhao, Ma Weijie, Liu Haowen, Du Xinxin, Han Chao, Sun Yue, Peng Fanglan. Performance Design and Experimental Study of Large-load Isolators[J]. Nuclear Power Engineering, 2024, 45(3): 154-160. doi: 10.13832/j.jnpe.2024.03.0154
Citation: Li Xingzhao, Ma Weijie, Liu Haowen, Du Xinxin, Han Chao, Sun Yue, Peng Fanglan. Performance Design and Experimental Study of Large-load Isolators[J]. Nuclear Power Engineering, 2024, 45(3): 154-160. doi: 10.13832/j.jnpe.2024.03.0154

Performance Design and Experimental Study of Large-load Isolators

doi: 10.13832/j.jnpe.2024.03.0154
  • Received Date: 2023-10-27
  • Rev Recd Date: 2024-03-14
  • Publish Date: 2024-06-13
  • A large-load isolator is designed for heavy equipment of nuclear power system by combining disc spring with magnetorheological liquid phase. The magnetorheological fluid damper is used as the main damping component, and the composite component of small stiffness and large stiffness disc spring is used as the main bearing structure. Through the analysis and design of the disc spring composite component, the structural parameters of the composite component are determined, and the sample isolator is formed accordingly. The spring rate ratio and damping ratio of the isolator samples were tested. The results show that the rated load of the isolator reaches 11 tons and the natural frequency is about 6.2 Hz. The dynamic stiffness and damping ratio performance of the isolator are relatively stable in the range of main vibration isolation frequencies. However, the dynamic stiffness and damping ratio are greatly affected by the amplitude. When the vibration amplitude increases from 0.05 mm to 0.2 mm, the dynamic stiffness decreases from about 100 kN/mm to about 45 kN/mm, and the damping ratio increases from about 0.07 to about 0.19. The research in this paper can provide technical reference and support for subsequent engineering applications.

     

  • loading
  • [1]
    SHIMADA T, SUHARA J, INOUE K. Three dimensional seismic isolation system for next-generation nuclear power plant with rolling seal type air spring and hydraulic rocking suppression system[C]//Proceedings of the ASME 2005 Pressure Vessels and Piping Conference. Denver, Colorado: ASME, 2005.
    [2]
    武锐,高建和,吴焕. 基于有限元的碟簧静刚度研究[J]. 机械工程师,2010(8): 57-59.
    [3]
    JIA F, ZHANG F C. Mechanical properties of disc-spring vibration isolators based on boundary friction[J]. Journal of Southeast University:English Edition, 2014, 30(1): 39-44.
    [4]
    DING Y K, LIU Y T. Cyclic tests of assembled self-centering buckling-restrained braces with pre-compressed disc springs[J]. Journal of Constructional Steel Research, 2020, 172: 106229. doi: 10.1016/j.jcsr.2020.106229
    [5]
    HADAD A A, SHAHROOZ B M, FORTNEY P J. Innovative resilient steel braced frame with Belleville disk and shape memory alloy assemblies[J]. Engineering Structures, 2021, 237: 112166. doi: 10.1016/j.engstruct.2021.112166
    [6]
    王维,李爱群,周德恒,等. 新型三维多功能隔振支座设计及其隔振分析[J]. 东南大学学报: 自然科学版,2014, 44(4): 787-792.
    [7]
    JIA F, SHA H W, ZHANG F C. Mechanical properties and impact response of disc-spring vibration isolator combined with polyurethane pieces[J]. International Journal of Intelligent Systems Technologies and Applications, 2014, 13(1-2): 117-137.
    [8]
    吴乙万,程湖,白鸿柏,等. 金属橡胶/碟簧叠层复合结构阻尼特性及其非对称迟滞模型参数识别[J]. 振动与冲击,2022, 41(20): 270-276,314.
    [9]
    ALMEN J O, LASZLO A. The uniform-section disk spring[J]. Journal of Fluids Engineering, 1936, 58(4): 305-314.
    [10]
    陆文遂. 碟形弹簧的计算、设计与制造[M]. 上海: 复旦大学出版社,1990: 35-53.
    [11]
    张广,汪辉兴,王炅. 磁流变阻尼器对火炮后坐炮膛时期阻尼特性分析[J]. 振动与冲击,2019, 38(20): 172-180,187.
    [12]
    SUN S S, TANG X, YANG J, et al. A new generation of magnetorheological vehicle suspension system with tunable stiffness and damping characteristics[J]. IEEE Transactions on Industrial Informatics, 2019, 15(8): 4696-4708. doi: 10.1109/TII.2018.2890290
    [13]
    HUA Y Y, ZHU S Y, SHI X. High-performance semiactive secondary suspension of high-speed trains using negative stiffness and magnetorheological dampers[J]. Vehicle System Dynamics, 2022, 60(7): 2290-2311. doi: 10.1080/00423114.2021.1899251
    [14]
    李嘉豪,张永浩,杜新新,等. 磁流变液阻尼器分阶段建模与流道参数敏感性分析[J]. 机械工程学报,2022, 58(11): 143-155.
    [15]
    李星照,马伟杰,刘胜,等. 核电厂大承载隔振器性能试验研究[C]. 长沙: 中西部核学会,2023.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article views (17) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return