Advance Search
Volume 45 Issue 4
Aug.  2024
Turn off MathJax
Article Contents
Zhao Ziyan, Xiang Zhaocai, Zhao Pengcheng. Research on Fast Prediction Method of Neutron Flux Based on Hybrid Driven Reduced Order Model[J]. Nuclear Power Engineering, 2024, 45(4): 1-8. doi: 10.13832/j.jnpe.2024.04.0001
Citation: Zhao Ziyan, Xiang Zhaocai, Zhao Pengcheng. Research on Fast Prediction Method of Neutron Flux Based on Hybrid Driven Reduced Order Model[J]. Nuclear Power Engineering, 2024, 45(4): 1-8. doi: 10.13832/j.jnpe.2024.04.0001

Research on Fast Prediction Method of Neutron Flux Based on Hybrid Driven Reduced Order Model

doi: 10.13832/j.jnpe.2024.04.0001
  • Received Date: 2023-10-02
  • Rev Recd Date: 2023-12-02
  • Publish Date: 2024-08-12
  • The accurate prediction of neutron flux and reactor power is very important for the safe operation of the reactor immediately after the disturbance of reactor parameters. The traditional method combining POD and Galerkin projection has the problem of low accuracy due to cumulative error. In this study, the implicit difference method is used to obtain the exact solution of one-dimensional neutron spatiotemporal diffusion. As the reference data, two LSTM neural network terms are introduced to eliminate the cumulative error and truncation error of POD, and to build a hybrid drive model driven by physics and data. The results show that the root-mean-square error of neutron flux, total power and each order modal coefficient is reduced by 1-2 orders of magnitude after adding the neural network correction term, and the calculation time is significantly reduced under the same order of prediction when the neural network extension term is added. The improved model based on 2nd and 3rd order scaling to 6th order is 13% and 7.6% faster than the original 6th order model, respectively. The hybrid drive model can improve the rapid prediction accuracy of POD, and the results have certain reference value.

     

  • loading
  • [1]
    龚禾林,陈长,李庆,等. 基于物理指引和数据增强的反应堆物理运行数字孪生研究[J]. 核动力工程,2021, 42(S2): 48-53.
    [2]
    寇家庆,张伟伟. 动力学模态分解及其在流体力学中的应用[J]. 空气动力学学报,2018, 36(2): 163-179.
    [3]
    丁鹏,陶文铨. 建立低阶模型的POD方法[J]. 工程热物理学报,2009, 30(6): 1019-1021. doi: 10.3321/j.issn:0253-231X.2009.06.032
    [4]
    羊俊合. 中子输运计算的OpenFOAM应用及其降阶研究[D]. 哈尔滨: 哈尔滨工业大学,2019.
    [5]
    VERGARI L, CAMMI A, LORENZI S. Reduced order modeling approach for parametrized thermal-hydraulics problems: inclusion of the energy equation in the POD-FV-ROM method[J]. Progress in Nuclear Energy, 2020, 118: 103071. doi: 10.1016/j.pnucene.2019.103071
    [6]
    张伟伟,朱林阳,刘溢浪,等. 机器学习在湍流模型构建中的应用进展[J]. 空气动力学学报,2019, 37(3): 444-454.
    [7]
    张译文,王志恒,邱睿贤,等. 利用长短期记忆神经网络的改进POD-Galerkin降阶模型及其在流场预测中的应用[J]. 西安交通大学学报,2024, 58(2): 12-21. doi: 10.7652/xjtuxb202402002
    [8]
    ZHANG X. The research of method for core on-line monitoring[J]. Nuclear Science and Technology, 2017, 5(4): 216-225.
    [9]
    康伟,张家忠,李凯伦. 利用本征正交分解的非线性Galerkin降维方法[J]. 西安交通大学学报,2011, 45(11): 58-62,67.
    [10]
    谢海润,吴亚东,欧阳华,等. 基于本征正交分解和动态模态分解的尾涡激振现象瞬态过程的模态分析[J]. 上海交通大学学报,2020, 54(2): 176-185.
    [11]
    PARISH E J, RIZZI F. On the impact of dimensionally-consistent and physics-based inner products for POD-Galerkin and least-squares model reduction of compressible flows[J]. Journal of Computational Physics, 2023, 491: 112387. doi: 10.1016/j.jcp.2023.112387
    [12]
    贾续毅,龚春林,李春娜. 基于POD和BPNN的流场快速计算方法[J]. 西北工业大学学报,2021, 39(6): 1212-1221. doi: 10.3969/j.issn.1000-2758.2021.06.006
    [13]
    冀南,杨俊康,赵鹏程,等. 耦合多变量LSTM与优化算法的铅铋反应堆事故参数预测方法研究[J]. 核动力工程,2023, 44(5): 64-70.
    [14]
    CHEN Z F, LIU Z J, JI N, et al. Accident parameter prediction method for lead-bismuth cooled reactor based on a multivariate LSTM network coupled with an optimization algorithm[J]. Annals of Nuclear Energy, 2023, 193: 110027. doi: 10.1016/j.anucene.2023.110027
    [15]
    史建楠,邹俊忠,张见,等. 基于DMD-LSTM模型的股票价格时间序列预测研究[J]. 计算机应用研究,2020, 37(3): 662-666.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(7)

    Article Metrics

    Article views (224) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return