Citation: | Zhang Junquan, Deng Jian, Luo Yan, Lu Tao. Research on Prediction and Sensitivity Analysis of Minimum Film Boiling Temperature of Quenching Boiling Based on Machine Learning[J]. Nuclear Power Engineering, 2024, 45(4): 69-76. doi: 10.13832/j.jnpe.2024.04.0069 |
[1] |
熊平. 圆柱骤冷沸腾表面热流密度反演及沸腾传热特性研究[D]. 北京: 北京化工大学,2021.
|
[2] |
IN W K, LEE K G. Quenching experiments with CrAl-coated zircaloy cladding in reflooding water flows[J]. Energies, 2021, 14(7): 1859. doi: 10.3390/en14071859
|
[3] |
SAKURAI A, SHIOTSU M, HATA K. Effect of system pressure on film-boiling heat transfer, minimum heat flux, and minimum temperature[J]. Nuclear Science and Engineering, 1984, 88(3): 321-330. doi: 10.13182/NSE84-A18586
|
[4] |
LEE C Y, CHUN T H, IN W K. Effect of change in surface condition induced by oxidation on transient pool boiling heat transfer of vertical stainless steel and copper rodlets[J]. International Journal of Heat and Mass Transfer, 2014, 79: 397-407. doi: 10.1016/j.ijheatmasstransfer.2014.08.030
|
[5] |
ZHAO X G, SHIRVAN K, SALKO R K, et al. On the prediction of critical heat flux using a physics-informed machine learning-aided framework[J]. Applied Thermal Engineering, 2020, 164: 114540. doi: 10.1016/j.applthermaleng.2019.114540
|
[6] |
ZHANG J F, ZHONG D W, SHI H P, et al. Machine learning prediction of critical heat flux on downward facing surfaces[J]. International Journal of Heat and Mass Transfer, 2022, 191: 122857. doi: 10.1016/j.ijheatmasstransfer.2022.122857
|
[7] |
LI J Q, MOU L W, ZHANG H Y, et al. Pool boiling heat transfer and quench front velocity during quenching of a rodlet in subcooled water: effects of the degree of subcooling[J]. Experimental Heat Transfer, 2018, 31(2): 148-160. doi: 10.1080/08916152.2017.1397819
|
[8] |
LEE C Y, KIM S. Parametric investigation on transient boiling heat transfer of metal rod cooled rapidly in water pool[J]. Nuclear Engineering and Design, 2017, 313: 118-128. doi: 10.1016/j.nucengdes.2016.12.005
|
[9] |
YEOM H, JO H, JOHNSON G, et al. Transient pool boiling heat transfer of oxidized and roughened Zircaloy-4 surfaces during water quenching[J]. International Journal of Heat and Mass Transfer, 2018, 120: 435-446. doi: 10.1016/j.ijheatmasstransfer.2017.12.060
|
[10] |
YEOM H. High temperature corrosion and heat transfer studies of zirconium-silicide coatings for light water reactor cladding applications[D]. Madison: Univ. of Wisconsin-Madison, 2017.
|
[11] |
HO Y H, HO M X, PAN C. The effects of subcooling on quenching of a vertical brass cylinder with heating power[C]//International Conference on Nuclear Engineering. Arlington: American Society of Mechanical Engineers, 2015, 56864: V001T04A001
HO Y H, HO M X, PAN C. The effects of subcooling on quenching of a vertical brass cylinder with heating power[C]//International Conference on Nuclear Engineering. Arlington: American Society of Mechanical Engineers, 2015, 56864: V001T04A001
|
[12] |
PETERSON L J, BAJOREK S M. Experimental investigation of minimum film boiling temperature for vertical cylinders at elevated pressure[C]//10th International Conference on Nuclear Engineering. Arlington: American Society of Mechanical Engineers, 2002: 883-892.
|
[13] |
EBRAHIM S A, CHANG S, CHEUNG F B, et al. Parametric investigation of film boiling heat transfer on the quenching of vertical rods in water pool[J]. Applied Thermal Engineering, 2018, 140: 139-146. doi: 10.1016/j.applthermaleng.2018.05.021
|
[14] |
XIONG J B, WANG Z F, XIONG P, et al. Experimental investigation on transient boiling heat transfer during quenching of fuel cladding surfaces[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119131. doi: 10.1016/j.ijheatmasstransfer.2019.119131
|
[15] |
HURLEY P, DUARTE J P. Implementation of fiber optic temperature sensors in quenching heat transfer analysis[J]. Applied Thermal Engineering, 2021, 195: 117257. doi: 10.1016/j.applthermaleng.2021.117257
|
[16] |
张琪琪,熊平,周佳樾,等. 不锈钢棒材形状对淬冷沸腾的影响研究[J]. 工程热物理学报,2023, 44(2): 463-467.
|
[17] |
王泽锋,邓坚,王嘉庚,等. 锆-4在冷却水中的骤冷沸腾传热实验研究[J]. 核动力工程,2021, 42(1): 186-191.
|
[18] |
XIONG P, LU T, LUO Y, et al. Study on liquid–vapor interface oscillation characteristics and heat transfer of film boiling during quenching of fuel cladding surfaces[J]. Applied Thermal Engineering, 2023, 219: 119615. doi: 10.1016/j.applthermaleng.2022.119615
|
[19] |
SALTELLI A, RATTO M, TARANTOLA S, et al. Sensitivity analysis practices: strategies for model-based inference[J]. Reliability Engineering & System Safety, 2006, 91(10-11): 1109-1125.
|
[20] |
SOBOL' I M. On the distribution of points in a cube and the approximate evaluation of integrals[J]. USSR Computational Mathematics and Mathematical Physics, 1967, 7(4): 784-802.
|
[21] |
杨龙,严振华,王明哲. QFD与Sobol’法在武器装备需求分析中的应用[J]. 舰船电子工程,2012, 32(3): 107-109,116. doi: 10.3969/j.issn.1627-9730.2012.03.040
|
[22] |
ZADEH F K, NOSSENT J, SARRAZIN F, et al. Comparison of variance-based and moment-independent global sensitivity analysis approaches by application to the SWAT model[J]. Environmental Modelling & Software, 2017, 91: 210-222.
|
[23] |
HENRY R E. A correlation for the minimum film boiling temperature[J]. AIChE Symposium Series, 1974, 70(138): 81-90.
|
[24] |
FOX E W, VER HOEF J M, OLSEN A R. Comparing spatial regression to random forests for large environmental data sets[J]. PLoS One, 2020, 15(3): e0229509. doi: 10.1371/journal.pone.0229509
|
[25] |
MEYER H, PEBESMA E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models[J]. Methods in Ecology and Evolution, 2021, 12(9): 1620-1633. doi: 10.1111/2041-210X.13650
|
[26] |
TAKOUTSING B, HEUVELINK G B M. Comparing the prediction performance, uncertainty quantification and extrapolation potential of regression kriging and random forest while accounting for soil measurement errors[J]. Geoderma, 2022, 428: 116192. doi: 10.1016/j.geoderma.2022.116192
|
[27] |
MUCKLEY E S, SAAL J E, MEREDIG B, et al. Interpretable models for extrapolation in scientific machine learning[J]. Digital Discovery, 2023, 2(5): 1425-1435. doi: 10.1039/D3DD00082F
|
[28] |
BOOKER D J, WHITEHEAD A L. Inside or outside: quantifying extrapolation across river networks[J]. Water Resources Research, 2018, 54(9): 6983-7003. doi: 10.1029/2018WR023378
|