Citation: | Cai Jiejin, Hu Zhiping, Deng Rining. Experimental Study of the Influences of CRUD layer on Bubble Departure Diameter and Bubble Departure Frequency on Fuel Cladding Surface[J]. Nuclear Power Engineering, 2024, 45(4): 118-126. doi: 10.13832/j.jnpe.2024.04.0118 |
[1] |
ZINKLE S J, WAS G S. Materials challenges in nuclear energy[J]. Acta Materialia, 2013, 61(3): 735-758. doi: 10.1016/j.actamat.2012.11.004
|
[2] |
LI S Z, LIU X J. Development of boron tracking and boron hideout (CRUD) model based on subchannel approach[J]. Nuclear Engineering and Design, 2018, 338: 166-175. doi: 10.1016/j.nucengdes.2018.08.023
|
[3] |
SHORT M P. The particulate nature of the crud source term in light water reactors[J]. Journal of Nuclear Materials, 2018, 509: 478-481. doi: 10.1016/j.jnucmat.2018.07.008
|
[4] |
邓日宁,蔡杰进. SiO2逐层沉积模拟燃料包壳表面沉积层的流动沸腾实验研究[J]. 原子能科学技术,2023, 57(10): 1910-1917. doi: 10.7538/yzk.2022.youxian.0891
|
[5] |
DENG R N, KAI M D, CAI J J. Subchannel thermal hydraulic analysis of 5×5 rod bundle with CRUD layer[J]. Nuclear Engineering and Design, 2023, 410: 112381. doi: 10.1016/j.nucengdes.2023.112381
|
[6] |
THORNCROFT E, KLAUSNERA J F, MEI R. An experimental investigation of bubble growth and detachment in vertical upflow and downflow boiling[J]. International Journal of Heat and Mass Transfer, 1998, 41(23): 3857-3871. doi: 10.1016/S0017-9310(98)00092-1
|
[7] |
CHU I C, NO H C, SONG C H. Bubble lift-off diameter and nucleation frequency in vertical subcooled boiling flow[J]. Journal of Nuclear Science and Technology, 2011, 48(6): 936-949. doi: 10.1080/18811248.2011.9711780
|
[8] |
GUAN P, JIA L, YIN L F, et al. Bubble departure size in flow boiling[J]. Heat and Mass Transfer, 2015, 51(7): 921-930. doi: 10.1007/s00231-014-1461-7
|
[9] |
LI Y J, REN S, ZHANG S W, et al. Bubble characteristics in subcooled flow boiling of seawater[J]. Chemical Engineering Journal, 2022, 430: 132019. doi: 10.1016/j.cej.2021.132019
|
[10] |
STRINGER C, WANG T, MICHAELOS M, et al. Cellpose: a generalist algorithm for cellular segmentation[J]. Nature Methods, 2021, 18(1): 100-106. doi: 10.1038/s41592-020-01018-x
|
[11] |
KLINE S J. Describing uncertainties in single-sample experiments[J]. Mechanical Engineering, 1963, 75: 3-8.
|
[12] |
FRITZ W. Berechnung des maximalvolumes von dampfblasen[J]. Physik Zeitschr, 1935, 36: 379-384.
|
[13] |
COLE R, ROHSENOW W M. Correlation of bubble departure diameters for boiling of saturated liquids[J]. Chemical Engineering Progress, 1969, 65(92): 211-213.
|
[14] |
WENZEL U. Saturated pool boiling and subcooled flow boiling of mixtures at atmospheric pressure[D]. Auckland: The University of Auckland, 1992.
|
[15] |
PHAN H T, CANEY N, MARTY P, et al. A model to predict the effect of contact angle on the bubble departure diameter during heterogeneous boiling[J]. International Communications in Heat and Mass Transfer, 2010, 37(8): 964-969. doi: 10.1016/j.icheatmasstransfer.2010.06.024
|
[16] |
NAM Y, AKTINOL E, DHIR V K, et al. Single bubble dynamics on a superhydrophilic surface with artificial nucleation sites[J]. International Journal of Heat and Mass Transfer, 2011, 54(7-8): 1572-1577. doi: 10.1016/j.ijheatmasstransfer.2010.11.031
|
[17] |
KIM J, KIM M H. On the departure behaviors of bubble at nucleate pool boiling[J]. International Journal of Multiphase Flow, 2006, 32(10-11): 1269-1286. doi: 10.1016/j.ijmultiphaseflow.2006.06.010
|
[18] |
ALAVI FAZEL S A, SHAFAEE S B. Bubble dynamics for nucleate pool boiling of electrolyte solutions[J]. Journal of Heat Transfer, 2010, 132(8): 081502. doi: 10.1115/1.4001315
|
[19] |
KOCAMUSTAFAOGULLARI G. Pressure dependence of bubble departure diameter for water[J]. International Communications in Heat and Mass Transfer, 1983, 10(6): 501-509. doi: 10.1016/0735-1933(83)90057-X
|