Advance Search
Volume 45 Issue 4
Aug.  2024
Turn off MathJax
Article Contents
Ni Wentao, Luo Qi, Zhong Wuye, Lyu Zheng. Preliminary Analysis of the Core Factors for Improving Efficiency of Thermionic Energy Conversion[J]. Nuclear Power Engineering, 2024, 45(4): 134-141. doi: 10.13832/j.jnpe.2024.04.0134
Citation: Ni Wentao, Luo Qi, Zhong Wuye, Lyu Zheng. Preliminary Analysis of the Core Factors for Improving Efficiency of Thermionic Energy Conversion[J]. Nuclear Power Engineering, 2024, 45(4): 134-141. doi: 10.13832/j.jnpe.2024.04.0134

Preliminary Analysis of the Core Factors for Improving Efficiency of Thermionic Energy Conversion

doi: 10.13832/j.jnpe.2024.04.0134
  • Received Date: 2023-08-28
  • Rev Recd Date: 2023-10-13
  • Publish Date: 2024-08-12
  • Efficient thermionic energy conversion technology is the key technology for improving the thermoelectric conversion efficiency of thermionic fuel elements and promoting the space thermionic reactor power supply towards higher power and longer lifetime. To explore the key factors that improve the efficiency of thermionic energy conversion, this article starts from the basic principle of thermionic energy conversion and summarizes the methods to improve the thermoelectric conversion efficiency of thermionic fuel elements from three aspects: improvement of the emitter, improvement of the collector, and reduction of arc voltage drop. Analysis shows that the clear direction for significantly improving thermoelectric conversion efficiency is the improvement of the collector, and the key is the development of a new generation of low absorption cesium work function collector materials.

     

  • loading
  • [1]
    苏著亭,杨继材,柯国土. 空间核动力[M]. 上海: 上海交通大学出版社,2016: 26-27.
    [2]
    STAUB D W. SNAP Programs: summary report: AI-AEC-13067[R]. Canoga Park: North American Aviation, Inc., 1973: 701.
    [3]
    H. E. 古哈尔金,H. H. 波诺马廖夫-斯捷普诺伊,B. A. 乌索夫. 热电转换和热离子转换式空间核反应堆电源“罗马什卡”和“叶尼塞”[M]. 刘舒,张玲,宋琛玮,译. 北京: 中国原子能出版社,2016: 5-7.
    [4]
    STANCULESCU A. The role of nuclear power and nuclear propulsion in the peaceful exploration of space[M]. Vienna: International Atomic Energy Agency, 2005: 31.
    [5]
    HATSOPOULOS G N, GYFTOPOULOS E P. Thermionic energy conversion, volume Ⅰ: processes and devices[M]. Cambridge: The MIT Press, 1973: 5-12.
    [6]
    STANCULESCU A. The role of nuclear power and nuclear propulsion in the peaceful exploration of space[M]. Vienna: International Atomic Energy Agency, 2005: 29-30.
    [7]
    VOSS S S. TOPAZ II system description: No. LA-UR-94-4[R]. Los Alamos: Los Alamos National Lab. , 1994.
    [8]
    钟武烨,赵守智,郑剑平,等. 空间热离子能量转换技术发展综述[J]. 深空探测学报,2020, 7(1): 47-60.
    [9]
    HUFFMAN F. Thermionic energy conversion[M]//MEYERS R A. Encyclopedia of Physical Science and Technology. 3rd ed. San Diego: Academic Press, 2003: 627-638.
    [10]
    RASOR N S. Thermionic energy conversion plasmas[J]. IEEE Transactions on Plasma Science, 1991, 19(6): 1191-1208. doi: 10.1109/27.125041
    [11]
    杨继材,柯国土,郑剑平,等. 空间核电源中的热电转换[M]. 哈尔滨: 哈尔滨工程大学出版社,2017: 147-149.
    [12]
    RASOR N S. Methods for improving thermionic converter performance[C]//Proceedings of the 3rd international Conference on Thermionic Electrical Power Generation. Juelich: International Atomic Energy Agency, 1972.
    [13]
    王秀锋. 几种典型金属材料的弹性性能与电子功函数的关联[D]. 湘潭: 湘潭大学,2011: 29.
    [14]
    SAMSTAD G I, DANKO J C, LEVIN H A. Performance of cylindrical converter with deep etched tungsten emitter[C]//Proceedings of the IEEE Conference Record of 1970 Thermionic Conversion Specialist Conference. New York: IEEE, 1970.
    [15]
    Б. А. 乌沙考夫. 热离子能量转换器的理论基础[Z]. 李耀鑫,译. 北京: 中国原子能科学研究院,1999: 34-37.
    [16]
    PARAMONOV D V, EL-GENK M S. Effect of oxygen on performance and mass transport in a single-cell thermionic fuel element[C]//Proceedings of the 31st Intersociety Energy Conversion Engineering Conference. Washington: IEEE, 1996.
    [17]
    DAVIS P R, SCHWIND G A. Low work function emitter electrodes for advanced thermionic converters[J]. Applied Surface Science, 1986, 25(4): 355-363. doi: 10.1016/0169-4332(86)90080-2
    [18]
    GUBBELS G H M, WOLFF L R, METSELAAR R. Electron emission microscope measurements on cermet electrodes for thermionic converters[J]. Solid State Ionics, 1985, 16: 47-54. doi: 10.1016/0167-2738(85)90023-2
    [19]
    CHOU S H, VOSS J, BARGATIN I, et al. An orbital-overlap model for minimal work functions of cesiated metal surfaces[J]. Journal of Physics:Condensed Matter, 2012, 24(44): 445007. doi: 10.1088/0953-8984/24/44/445007
    [20]
    KRONIK L, SHAPIRA Y. Surface photovoltage phenomena: theory, experiment, and applications[J]. Surface Science Reports, 1999, 37(1-5): 1-206. doi: 10.1016/S0167-5729(99)00002-3
    [21]
    SCHINDLER P, RILEY D C, BARGATIN I, et al. Surface photovoltage-induced ultralow work function material for thermionic energy converters[J]. ACS Energy Letters, 2019, 4(10): 2436-2443. doi: 10.1021/acsenergylett.9b01214
    [22]
    KOECK F A M, WANG Y Y, NEMANICH R J. Thermionic converters based on nanostructured carbon materials[J]. AIP Conference Proceedings, 2006, 813(1): 607-613.
    [23]
    WANG Y Y, TANG G Y, KOECK F A M, et al. Experimental studies of the formation process and morphologies of carbon nanotubes with bamboo mode structures[J]. Diamond and Related Materials, 2004, 13(4-8): 1287-1291. doi: 10.1016/j.diamond.2004.01.009
    [24]
    WESTOVER T L, FRANKLIN A D, COLA B A, et al. Photo-and thermionic emission from potassium-intercalated carbon nanotube arrays[J]. Journal of Vacuum Science & Technology B, 2010, 28(2): 423-434.
    [25]
    MICHEL J A, ROBINSON V S, YANG L, et al. Synthesis and characterization of potassium metal/graphitic carbon nanofiber intercalates[J]. Journal of Nanoscience and Nanotechnology, 2008, 8(4): 1942-1950. doi: 10.1166/jnn.2008.18260
    [26]
    LIANG S J, ANG L K. Electron thermionic emission from graphene and a thermionic energy converter[J]. Physical Review Applied, 2015, 3(1): 014002. doi: 10.1103/PhysRevApplied.3.014002
    [27]
    ZHU F, LIN X Y, LIU P, et al. Heating graphene to incandescence and the measurement of its work function by the thermionic emission method[J]. Nano Research, 2014, 7(4): 553-560. doi: 10.1007/s12274-014-0423-1
    [28]
    GIOVANNETTI G, KHOMYAKOV P A, BROCKS G, et al. Doping graphene with metal contacts[J]. Physical Review Letters, 2008, 101(2): 026803. doi: 10.1103/PhysRevLett.101.026803
    [29]
    KHOSHAMAN A H, FAN H D E, KOCH A T, et al. Thermionics, thermoelectrics, and nanotechnology: new possibilities for old ideas[J]. IEEE Nanotechnology Magazine, 2014, 8(2): 4-15. doi: 10.1109/MNANO.2014.2313172
    [30]
    KÖCK F A M, GARGUILO J M, NEMANICH R J. Field enhanced thermionic electron emission from sulfur doped nanocrystalline diamond films[J]. Diamond and Related Materials, 2005, 14(3-7): 704-708. doi: 10.1016/j.diamond.2004.12.056
    [31]
    SMITH J R, NEMANICH R J, BILBRO G L. The effect of Schottky barrier lowering and nonplanar emitter geometry on the performance of a thermionic energy converter[J]. Diamond and Related Materials, 2006, 15(4-8): 870-874. doi: 10.1016/j.diamond.2005.12.057
    [32]
    KOECK F A M, NEMANICH R J, BALASUBRAMANIAM Y, et al. Enhanced thermionic energy conversion and thermionic emission from doped diamond films through methane exposure[J]. Diamond and Related Materials, 2011, 20(8): 1229-1233. doi: 10.1016/j.diamond.2011.06.032
    [33]
    NEMANIČ V, ŽUMER M, KOVAČ J, et al. In situ reactivation of low-temperature thermionic electron emission from nitrogen doped diamond films by hydrogen exposure[J]. Diamond and Related Materials, 2014, 50: 151-156. doi: 10.1016/j.diamond.2014.10.003
    [34]
    PARAMONOV D V, EL-GENK M S. A review of cesium thermionic converters with developed emitter surfaces[J]. Energy Conversion and Management, 1997, 38(6): 533-549. doi: 10.1016/S0196-8904(96)00067-2
    [35]
    赵广播,侴爱辉. 热离子能量转换器发射极与接收极的材料与结构[J]. 中国科技论文在线,2006.
    [36]
    LEE C, LEIB D, MISKOLCZY G. Performance of thermionic converters with structured emitters and collectors[C]//Proceedings of the 25th Intersociety Energy Conversion Engineering Conference. Reno: IEEE, 1990.
    [37]
    EL-GENK M S, LUKE J R. Performance comparison of thermionic converters with smooth and macro-grooved electrodes[J]. Energy Conversion and Management, 1999, 40(3): 319-334. doi: 10.1016/S0196-8904(98)00049-1
    [38]
    SIDELNIKOV V N. On the Electron-from-Metals work function[J]. Surface Roentgen and Neutron Research, 2000(8): 42-44.
    [39]
    SIDEL’NIKOV V N. Nonmonotonic potential barrier for electrons inside an adsorbed layer on the collector of a thermionic converter[J]. Atomic Energy, 2000, 89(1): 574-577. doi: 10.1007/BF02673517
    [40]
    GERASHCHENKO S S, GUSEVA M I, KORYUKIN V A, et al. Investigation of the characteristics of thermionic converters with a Mo (110) single-crystal collector with Ion-implanted oxygen[J]. Atomic Energy, 1994, 76(2): 147-149. doi: 10.1007/BF02414361
    [41]
    YARYGIN V, SIDELNIKOV V, MIRONOV V. Energy conversion options for NASA's space nuclear power systems initiative-underestimated capability of thermionics[C]//Proceedings of the 2nd International Energy Conversion Engineering Conference. Providence: AIAA, 2004.
    [42]
    YARYGIN D V, MIRONOV V S, SOLOV’EV N P, et al. High-output thermionic converter based on a metal-oxygen system on the collector[J]. Atomic Energy, 2000, 89(1): 546-554. doi: 10.1007/BF02673514
    [43]
    HOLMLID L, SVENSSON R. Collector for thermionic energy converter covered with carbon like material and having a low electronic work function: US, 5578886[P]. 1996-11-26.
    [44]
    YARYGIN V I. Experimental studies of properties of excited states of cesium (Rydberg Matter) in the interelectrode plasma of a low-temperature thermal to electric energy thermionic converter[J]. Journal of Cluster Science, 2012, 23(1): 77-93. doi: 10.1007/s10876-012-0443-5
    [45]
    KHALID K A A, LEONG T J, MOHAMED K. Review on thermionic energy converters[J]. IEEE Transactions on Electron Devices, 2016, 63(6): 2231-2241. doi: 10.1109/TED.2016.2556751
    [46]
    CAMPBELL M F, AZADI M, LU Z P, et al. Nanostructured spacers for thermionic and thermophotovoltaic energy converters[J]. Journal of Microelectromechanical Systems, 2020, 29(5): 637-644. doi: 10.1109/JMEMS.2020.3000422
    [47]
    NICAISE S M, LIN C, AZADI M, et al. Micron-gap spacers with ultrahigh thermal resistance and mechanical robustness for direct energy conversion[J]. Microsystems & Nanoengineering, 2019, 5(1): 31.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (104) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return