Citation: | Peng Cheng, Meng Xianpin, Deng Jian. Study on Orthogonal Experiments of Jet Breakup and its Modeling Based on MPS Method[J]. Nuclear Power Engineering, 2024, 45(4): 181-189. doi: 10.13832/j.jnpe.2024.04.0181 |
[1] |
THEOFANOUS T G, SAITO M. An assessment of Class-9 (core-melt) accidents for PWR dry-containment systems[J]. Nuclear Engineering and Design, 1981, 66(3): 301-332. doi: 10.1016/0029-5493(81)90162-X
|
[2] |
BRAYER C, LE MONNIER A, CHIKHI N. Impact of corium thermophysical properties on fuel-coolant interaction[J]. Annals of Nuclear Energy, 2020, 147: 107613. doi: 10.1016/j.anucene.2020.107613
|
[3] |
彭程,邓坚. 蒸汽夹带作用下高温颗粒表面拖曳力模型研究[J]. 核动力工程,2022, 43(6): 61-65.
|
[4] |
SUN R Y, WU L P, DING W, et al. From melt jet break-up to debris bed formation: a review of melt evolution model during fuel-coolant interaction[J]. Annals of Nuclear Energy, 2022, 165: 108642. doi: 10.1016/j.anucene.2021.108642
|
[5] |
CORRADINI M L, KIM B J, OH M D. Vapor explosions in light water reactors: a review of theory and modeling[J]. Progress in Nuclear Energy, 1988, 22(1): 1-117. doi: 10.1016/0149-1970(88)90004-2
|
[6] |
TAYLOR G I. Scientific papers. Vol. Ⅲ: aerodynamics and the mechanics of projectiles and explosions [M]. New York: Cambridge University Press, 1963: 287-303.
|
[7] |
EPSTEIN M, FAUSKE H K. Applications of the turbulent entrainment assumption to immiscible gas-liquid and liquid-liquid systems[J]. Chemical Engineering Research and Design, 2001, 79(4): 453-462. doi: 10.1205/026387601750282382
|
[8] |
MATSUO E, ABE Y, CHITOSE K, et al. Study on jet breakup behavior at core disruptive accident for fast breeder reactor[J]. Nuclear Engineering and Design, 2008, 238(8): 1996-2004. doi: 10.1016/j.nucengdes.2007.11.011
|
[9] |
SAITO M, SATO K, IMAHORI S. Experimental study on penetration behaviors of water jet into Freon-11 and liquid nitrogen [C]. Houston: Proceeding of 1988 National Heat Transfer Conference, 1988.
|
[10] |
KOSHIZUKA S, NOBE A, OKA Y. Numerical analysis of breaking waves using the moving particle semi-implicit method[J]. International Journal for Numerical Methods in Fluids, 1998, 26(7): 751-769. doi: 10.1002/(SICI)1097-0363(19980415)26:7<751::AID-FLD671>3.0.CO;2-C
|
[11] |
PARK S, PARK H S, JANG B I, et al. 3-D simulation of plunging jet penetration into a denser liquid pool by the RD-MPS method[J]. Nuclear Engineering and Design, 2016, 299: 154-162. doi: 10.1016/j.nucengdes.2015.08.003
|
[12] |
CAI Q H, CHEN R H, GUO K L, et al. An enhanced moving particle semi-implicit method for simulation of incompressible fluid flow and fluid-structure interaction[J]. Computers & Mathematics with Applications, 2023, 145: 41-57.
|
[13] |
BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354. doi: 10.1016/0021-9991(92)90240-Y
|
[14] |
DING W, XIAO X K, CAI Q H, et al. Numerical investigation of fluid–solid interaction during debris bed formation based on MPS-DEM[J]. Annals of Nuclear Energy, 2022, 175: 109244. doi: 10.1016/j.anucene.2022.109244
|
[15] |
TIAN W X, QIU S Z, SUI G H, et al. Numerical solution on spherical vacuum bubble collapse using MPS method[J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(10): 102920. doi: 10.1115/1.4001058
|
[16] |
CHEN R H, CAI Q H, ZHANG P H, et al. Three-dimensional numerical simulation of the HECLA-4 transient MCCI experiment by improved MPS method[J]. Nuclear Engineering and Design, 2019, 347: 95-107. doi: 10.1016/j.nucengdes.2019.03.024
|
[17] |
CAI Q H, ZHU D H, CHEN R H, et al. Three-dimensional numerical study on the effect of sidewall crust thermal resistance on transient MCCI by improved MPS method[J]. Annals of Nuclear Energy, 2020, 144: 107525. doi: 10.1016/j.anucene.2020.107525
|
[18] |
陈荣华, 田文喜, 左娟莉, 等. 基于MPS方法的液态铅铋合金内气泡上升流数值模拟[J]. 核动力工程,2011,32(5): 96-99.
陈荣华, 田文喜, 左娟莉, 等. 基于MPS方法的液态铅铋合金内气泡上升流数值模拟[J]. 核动力工程, 2011,32(5): 96-99.
|
[19] |
MEIGNEN R, RAVERDY B, PICCHI S, et al. The challenge of modeling fuel-coolant interaction: Part II -Steam explosion[J]. Nuclear Engineering and Design, 2014, 280: 528-541. doi: 10.1016/j.nucengdes.2014.08.028
|
[20] |
CHENG H, ZHAO J Y, WANG J. Experimental investigation on the characteristics of melt jet breakup in water: the importance of surface tension and Rayleigh-Plateau instability[J]. International Journal of Heat and Mass Transfer, 2019, 132: 388-393. doi: 10.1016/j.ijheatmasstransfer.2018.12.026
|
[21] |
NISHIMURA S, SUGIYAMA K I, KINOSHITA I, et al. Fragmentation mechanisms of a single molten copper jet penetrating a sodium pool-transition from thermal to hydrodynamic fragmentation in instantaneous contact interface temperatures below its freezing point[J]. Journal of Nuclear Science and Technology, 2010, 47(3): 219-228. doi: 10.1080/18811248.2010.9711948
|
[22] |
CHU C C, SIENICKI J J, SPENCER B W, et al. Ex-vessel melt-coolant interactions in deep water pool: studies and accident management for Swedish BWRs[J]. Nuclear Engineering and Design, 1995, 155(1-2): 159-213. doi: 10.1016/0029-5493(94)00874-X
|
[23] |
DINH T N, BUI V A, NOURGALIEV R R, et al. Experimental and analytical studies of melt jet-coolant interactions: a synthesis[J]. Nuclear Engineering and Design, 1999, 189(1-3): 299-327. doi: 10.1016/S0029-5493(98)00275-1
|
[24] |
THAKRE S, MANICKAM L, MA W M. A numerical simulation of jet breakup in melt coolant interactions[J]. Annals of Nuclear Energy, 2015, 80: 467-475. doi: 10.1016/j.anucene.2015.02.038
|
[25] |
李云雁,胡传荣. 试验设计与数据处理[M]. 第三版. 北京: 化学工业出版社,2017: 68-75.
|
[26] |
CHEN J T, ZHOU Y, ZHAO J Y, et al. Experimental and theoretical study of jet hydrodynamic breakup behavior with air entrainment[J]. Annals of Nuclear Energy, 2021, 151: 107900. doi: 10.1016/j.anucene.2020.107900
|
[27] |
JUNG W H, PARK H S, MORIYAMA K, et al. Analysis of experimental uncertainties in jet breakup length and jet diameter during molten fuel-coolant interaction[J]. Nuclear Engineering and Design, 2019, 344: 183-194. doi: 10.1016/j.nucengdes.2019.01.018
|
[28] |
MORIYAMA K, MARUYAMA Y, USAMI T, et al. Coarse break-up of a stream of oxide and steel melt in a water pool: JAERI-Research-2005-017[R]. Kashiwa: Japan Atomic Energy Research Institute, 2005.
|