Advance Search
Volume 45 Issue 4
Aug.  2024
Turn off MathJax
Article Contents
Liu Weiqi, Wang Jinshi, Xue Kai, Sun Zhiyong, Liu Xingmin, Li Gen, Yan Junjie. Capacity Configuration and Operation Optimization of a Low-Temperature Reactor Nuclear Heating System with Heat Storage[J]. Nuclear Power Engineering, 2024, 45(4): 213-220. doi: 10.13832/j.jnpe.2024.04.0213
Citation: Liu Weiqi, Wang Jinshi, Xue Kai, Sun Zhiyong, Liu Xingmin, Li Gen, Yan Junjie. Capacity Configuration and Operation Optimization of a Low-Temperature Reactor Nuclear Heating System with Heat Storage[J]. Nuclear Power Engineering, 2024, 45(4): 213-220. doi: 10.13832/j.jnpe.2024.04.0213

Capacity Configuration and Operation Optimization of a Low-Temperature Reactor Nuclear Heating System with Heat Storage

doi: 10.13832/j.jnpe.2024.04.0213
  • Received Date: 2023-09-20
  • Rev Recd Date: 2023-10-29
  • Publish Date: 2024-08-12
  • In order to meet the growing demand for low-carbon heating and improve the operational flexibility and economic benefits of the heating system, a nuclear heating system (DHGHS) integrating a "Yanlong" pool-type low-temperature heating reactor (DHR-400), a heat storage pool, and a gas boiler was proposed. A central heating region in Liaoyuan City was taken as the application scenario of DHGHS, the equipment capacity and operation optimization with the goal of minimizing the annual cost were carried out. A comparison between DHGHS and four heating schemes including DHR-400 and heat storage pool, DHR-400 and gas boiler, gas boiler, and ground source heat pump was conducted. The results show that the heat storage pool with a rated volume of 3.15×105 m3 and the gas boiler with a rated capacity of 82.79 MW can achieve the flexible operation of DHGHS throughout the heating period. The total number of power adjustments of DHR-400 in the whole heating period is only 177 times. The optimal annual cost of DHGHS is RMB 1.16×108, which is lower than the other four heating schemes. The optimal heating scale of DHGHS is 1.18×107 m2. The work in this paper can provide theoretical guidance for the design and operation optimization of the multi-heat source nuclear heating system.

     

  • loading
  • [1]
    张佳思,周春. 我国清洁供热产业发展现状与趋势研究[J]. 中国能源,2022, 44(5): 40-46.
    [2]
    王永福,孙玉良. 高温气冷堆热电联产技术经济研究[J]. 核动力工程,2016, 37(3): 181-184.
    [3]
    梁卫红,解衡. 改进型低温供热堆二次侧非能动余热排出系统不稳定性分析[J]. 核动力工程,2018, 39(2): 14-19.
    [4]
    郝文涛,张亚军. 低温供热堆研究进展[J]. 中国核电,2019, 12(5): 518-521.
    [5]
    谢菲,李金才,解衡. 小型核供热堆负荷跟踪瞬态和反应性事故过程稳压特性及其稳定性研究[J]. 核动力工程,2016, 37(4): 142-147.
    [6]
    ALEKSANDR S,赵金玲,顾青青,等. 基于核能低温供热堆调节特性的基本热负荷确定方法研究[J]. 暖通空调,2023, 53(2): 108-114,126.
    [7]
    LIPKA M, RAJEWSKI A. Regress in nuclear district heating. The need for rethinking cogeneration[J]. Progress in Nuclear Energy, 2020, 130: 103518. doi: 10.1016/j.pnucene.2020.103518
    [8]
    陈华,向毅文. 核能供热新星——泳池式低温堆简介[J]. 区域供热,2018(1): 19-23.
    [9]
    柯国土,刘兴民,郭春秋,等. 泳池式低温供热堆技术进展[J]. 原子能科学技术,2020, 54(S1): 206-212.
    [10]
    朱珈辰,张亚东,杨笑,等. 池式低温供热堆快速供热启动方式仿真研究[J]. 节能技术,2021, 39(5): 448-451.
    [11]
    张力玮,段天英,贾玉文. 400MW低温供热堆功率调节系统仿真研究[J]. 原子能科学技术,2018, 52(12): 2181-2187.
    [12]
    胡彬和,刘兴民,孙征,等. 400MW泳池式低温供热堆堆芯核设计[J]. 核技术,2021, 44(10): 79-86.
    [13]
    张乐,贾玉文,段天英,等. 低温堆供热控制研究[J]. 原子能科学技术,2023, 57(1): 165-174.
    [14]
    HEO J Y, PARK J H, CHAE Y J, et al. Evaluation of various large-scale energy storage technologies for flexible operation of existing pressurized water reactors[J]. Nuclear Engineering and Technology, 2021, 53(8): 2427-2444. doi: 10.1016/j.net.2021.02.023
    [15]
    SAEED R M, FRICK K L, SHIGREKAR A, et al. Mapping thermal energy storage technologies with advanced nuclear reactors[J]. Energy Conversion and Management, 2022, 267: 115872. doi: 10.1016/j.enconman.2022.115872
    [16]
    DENHOLM P, KING J C, KUTCHER C F, et al. Decarbonizing the electric sector: Combining renewable and nuclear energy using thermal storage[J]. Energy Policy, 2012, 44: 301-311. doi: 10.1016/j.enpol.2012.01.055
    [17]
    EDWARDS J, BINDRA H, SABHARWALL P. Exergy analysis of thermal energy storage options with nuclear power plants[J]. Annals of Nuclear Energy, 2016, 96: 104-111. doi: 10.1016/j.anucene.2016.06.005
    [18]
    RÄMÄ M, LEURENT M, DE LAVERGNE J G D. Flexible nuclear co-generation plant combined with district heating and a large-scale heat storage[J]. Energy, 2020, 193: 116728. doi: 10.1016/j.energy.2019.116728
    [19]
    HADI GHAZAIE S, SADEGHI K, CHEBAC R, et al. On the use of advanced nuclear cogeneration plant integrated into latent heat storage for district heating[J]. Sustainable Energy Technologies and Assessments, 2022, 50: 101838. doi: 10.1016/j.seta.2021.101838
    [20]
    WANG J, ZHAO J, YE X L, et al. Safety constraints and optimal operation of large-scale nuclear power plant participating in peak load regulation of power system[J]. IET Generation, Transmission & Distribution, 2017, 11(13): 3332-3340.
    [21]
    TIAN J F. Economic feasibility of heat supply from simple and safe nuclear plants[J]. Annals of Nuclear Energy, 2001, 28(11): 1145-1150. doi: 10.1016/S0306-4549(00)00110-9
    [22]
    BENALCAZAR P. Sizing and optimizing the operation of thermal energy storage units in combined heat and power plants: an integrated modeling approach[J]. Energy Conversion and Management, 2021, 242: 114255. doi: 10.1016/j.enconman.2021.114255
    [23]
    XIE Z C, XIANG Y T, WANG D J, et al. Numerical investigations of long-term thermal performance of a large water pit heat storage[J]. Solar Energy, 2021, 224: 808-822. doi: 10.1016/j.solener.2021.06.027
    [24]
    XIANG Y T, GAO M, FURBO S, et al. Assessment of inlet mixing during charge and discharge of a large-scale water pit heat storage[J]. Renewable Energy, 2023, 217: 119170. doi: 10.1016/j.renene.2023.119170
    [25]
    LOCATELLI G, BOARIN S, PELLEGRINO F, et al. Load following with Small Modular Reactors (SMR): a real options analysis[J]. Energy, 2015, 80: 41-54. doi: 10.1016/j.energy.2014.11.040
    [26]
    LIU Z J, FAN G Y, SUN D K, et al. A novel distributed energy system combining hybrid energy storage and a multi-objective optimization method for nearly zero-energy communities and buildings[J]. Energy, 2022, 239: 122577. doi: 10.1016/j.energy.2021.122577
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (95) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return