Citation: | Zhou Xiafeng, Zhong Changming, Zhang Yangyi, Zhang Yunshan, Zeng Wei, Tang Qifen, Qiang Shenglong, Gong Zhaohu. Research on Solving Different Nuclear Reactor Models by Coupling Multiphysics Environment (COME) Based on Operator Spliting, Picard and JFNK Methods[J]. Nuclear Power Engineering, 2024, 45(5): 7-18. doi: 10.13832/j.jnpe.2024.05.0007 |
[1] |
BARBER D A, MILLER R M, JOO H G, et al. A generalized interface module for the coupling of spatial kinetics and thermal-hydraulics codes: LA-UR-99-419[R]. Los Alamos: Los Alamos National Laboratory, 1999.
|
[2] |
BARBER D, MILLER R M, JOO H, et al. Coupled 3D reactor kinetics and thermal-hydraulic code development activities at the U. S. Nuclear Regulatory Commission: LA-UR-99-1208[R]. Los Alamos: Los Alamos National Laboratory, 1999.
|
[3] |
WEBER D P, SOFU T, PFEIFFER P A, et al. The numerical nuclear reactor for high fidelity integrated simulation of neutronic, thermal-hydraulic and thermo mechanical phenomena-project overview[C]//Proceedings of the PHYSOR 2004-The Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments. Chicago: American Nuclear Society, 2004.
|
[4] |
KOCHUNAS B, JABAAY D, COLLINS B, et al. Demonstration of neutronics coupled to thermal-hydraulics for a full-core problem using COBRA-TF/MPACT: CASL-U-2014-0051-000[R]. U.S.: CASL Document, 2014.
|
[5] |
PALMTAG S, CLARNO K, DAVIDSON G, et al. Coupled neutronics and thermal-hydraulic solution of a full-core PWR using VERA-CS[C]. Kyoto, Japan: Proceedings of the PHYSOR 2014- The Role of Reactor Physics Toward a Sustainable Future, 2014.
|
[6] |
PÉRIN Y. Development of a multi-physics, multi-scale simulation tool for LWR safety analysis[D]. Munich: Technische Universität München, 2016.
|
[7] |
GILL D F, GRIESHEIMER D P, AUMILLER D L. Numerical methods in coupled Monte Carlo and thermal-hydraulic calculations[J]. Nuclear Science and Engineering, 2017, 185(1): 194-205. doi: 10.13182/NSE16-3
|
[8] |
SENECAL J P, WEI J. A modified tightly coupled method for reactor transient simulations[C]//Proceedings of the PHYSOR 2016. Chicago: American Nuclear Society, 2016: 1690-1699.
|
[9] |
HAMILTON S, BERRILL M, CLARNO K, et al. An assessment of coupling algorithms for nuclear reactor core physics simulations[J]. Journal of Computational Physics, 2016, 311: 241-257. doi: 10.1016/j.jcp.2016.02.012
|
[10] |
KNOLL D A, KEYES D E. Jacobian-free Newton-Krylov methods: a survey of approaches and applications[J]. Journal of Computational Physics, 2004, 193(2): 357-397. doi: 10.1016/j.jcp.2003.08.010
|
[11] |
GILL D F. Newton-Krylov methods for the solution of the k-eigenvalue problem in multigroup neutronics calculations[D]. Nitani Valley, Central County, Pennsylvania: Pennsylvania State University, 2009.
|
[12] |
LUCAS P, VAN ZUIJLEN A H, BIJL H. Fast unsteady flow computations with a Jacobian-free Newton–Krylov algorithm[J]. Journal of Computational Physics, 2010, 229(24): 9201-9215. doi: 10.1016/j.jcp.2010.08.033
|
[13] |
WALKER E D, COLLINS B, GEHIN J C. Low-order multiphysics coupling techniques for nuclear reactor applications[J]. Annals of Nuclear Energy, 2019, 132: 327-338. doi: 10.1016/j.anucene.2019.04.022
|
[14] |
BELCOURT N, BARTLETT R A, PAWLOWSKI R P, et al. A theory manual for multi-physics code coupling in LIME: SAND2011-2195[R]. Albuquerque: Sandia National Laboratories, 2011.
|
[15] |
MARTIN N, STEWART R, BAYS S. A multiphysics model of the versatile test reactor based on the MOOSE framework[J]. Annals of Nuclear Energy, 2022, 172: 109066. doi: 10.1016/j.anucene.2022.109066
|
[16] |
TURNER J A, CLARNO K, SIEGER M, et al. The virtual environment for reactor applications (VERA): design and architecture[J]. Journal of Computational Physics, 2016, 326: 544-568. doi: 10.1016/j.jcp.2016.09.003
|
[17] |
周夏峰. 基于节块展开法的JFNK联立求解耦合系统的方法研究[M]. 北京: 清华大学出版社,2020: 194.
|
[18] |
ZHOU X F. Jacobian-free Newton Krylov two-node coarse mesh finite difference based on nodal expansion method[J]. Nuclear Engineering and Technology, 2022, 54(8): 3059-3072. doi: 10.1016/j.net.2022.02.005
|
[19] |
ZHANG Y Y, ZHOU X F. Parallel Jacobian-free Newton Krylov discrete ordinates method for pin-by-pin neutron transport models[J]. Frontiers in Energy Research, 2023, 10: 1101050. doi: 10.3389/fenrg.2022.1101050
|
[20] |
张杨奕. 并行中子输运模型的JFNK求解方法研究[D]. 武汉: 华中科技大学,2023.
|
[21] |
张杨奕,张天铖,周夏峰. 稳态及瞬态中子输运模型的JFNK求解方法研究[J]. 原子能科学技术,2024, 58(6): 1234-1241.
|
[22] |
PORTER N W, MOUSSEAU V A, AVRAMOVA M N. CTF-R: a novel residual-based thermal hydraulic solver[J]. Nuclear Engineering and Design, 2019, 348: 37-45. doi: 10.1016/j.nucengdes.2019.04.006
|
[23] |
章运山,周夏峰. 全堆芯热工子通道模型的JFNK全局求解方法研究[J]. 核动力工程,2023, 44(5): 39-46.
|
[24] |
章运山. 基于Jacobian-free Newton Krylov方法的全堆芯热工子通道耦合模型研究[D]. 武汉: 华中科技大学,2023.
|
[25] |
ZHOU X F, ZHONG C M, LI Z C, et al. Preconditioned Jacobian-free Newton-Krylov fully implicit high order WENO schemes and flux limiter methods for two-phase flow models[J]. Nuclear Engineering and Technology, 2022, 54(1): 49-60. doi: 10.1016/j.net.2021.07.022
|
[26] |
ZHOU X F, ZHONG C M, ZHANG Y Y. Jacobian-free Newton Krylov two-node coarse mesh finite difference based on nodal expansion method for multiphysics coupled models[J]. Annals of Nuclear Energy, 2022, 168: 108915. doi: 10.1016/j.anucene.2021.108915
|
[27] |
ZHOU X F. Jacobian-free Newton Krylov coarse mesh finite difference algorithm based on high-order nodal expansion method for three-dimensional nuclear reactor pin-by-pin multiphysics coupled models[J]. Computer Physics Communications, 2023, 282: 108509. doi: 10.1016/j.cpc.2022.108509
|
[28] |
ZHOU X F. Operator split, Picard iteration and JFNK methods based on nonlinear CMFD for transient full core models in the coupling multiphysics environment[J]. Annals of Nuclear Energy, 2023, 183: 109669. doi: 10.1016/j.anucene.2022.109669
|