Citation: | Wang Zeji, Guo Zhangpeng, Zhu Aobo, Ouyang Xiaoping, Niu Fenglei. Preliminary Analytical Study of the Effect of Accident Tolerant Fuel on Fuel Rod Performance under LOCA Condition[J]. Nuclear Power Engineering, 2024, 45(5): 99-107. doi: 10.13832/j.jnpe.2024.05.0099 |
[1] |
FILBURN T, BULLARD S. Three mile island, Chernobyl and Fukushima[M]. Cham: Springer, 2016: 77-89.
|
[2] |
ZINKLE S J, TERRANI K A, GEHIN J C, et al. Accident tolerant fuels for LWRs: a perspective[J]. Journal of Nuclear Materials, 2014, 448(1-3): 374-379. doi: 10.1016/j.jnucmat.2013.12.005
|
[3] |
OTT L J, ROBB K R, WANG D. Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions[J]. Journal of Nuclear Materials, 2014, 448(1-3): 520-533. doi: 10.1016/j.jnucmat.2013.09.052
|
[4] |
YANG H, LI X Q, LIU C X, et al. Hydrothermal corrosion behavior of SiCf/SiC composites candidate for PWR accident tolerant fuel cladding[J]. Ceramics International, 2018, 44(18): 22865-22873. doi: 10.1016/j.ceramint.2018.09.079
|
[5] |
KANE K, BELL S, CAPPS N, et al. The response of accident tolerant fuel cladding to LOCA burst testing: a comparative study of leading concepts[J]. Journal of Nuclear Materials, 2023, 574: 154152. doi: 10.1016/j.jnucmat.2022.154152
|
[6] |
黄俊,徐涛,刘俊凯,等. 基于RELAP5的ATF燃料的事故分析程序开发及应用[C]//第十五届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室学术年会论文集. 荣成: 中国核学会核能动力分会反应堆热工流体专业委员会,中核核反应堆热工水力技术重点实验室,2017.
|
[7] |
GEELHOOD K J, LUSCHER W G, CUTA J M, et al. FRAPTRAN-2.0: a computer code for the transient analysis of oxide fuel rods: PNNL-19400, Vol. 1 Rev2[R]. Richland: Pacific Northwest National Laboratory, 2016.
|
[8] |
HAGRMAN D L, REYMANN G A. MATPRO-Version 11: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior: NUREG/CR-0497[R]. United States: Idaho National Lab., 1979.
|
[9] |
STONE J G, SCHLEICHER R, DECK C P, et al. Stress analysis and probabilistic assessment of multi-layer SiC-based accident tolerant nuclear fuel cladding[J]. Journal of Nuclear Materials, 2015, 466: 682-697. doi: 10.1016/j.jnucmat.2015.08.001
|
[10] |
SNEAD L L, NOZAWA T, KATOH Y, et al. Handbook of SiC properties for fuel performance modeling[J]. Journal of Nuclear Materials, 2007, 371(1-3): 329-377. doi: 10.1016/j.jnucmat.2007.05.016
|
[11] |
KATOH Y, SNEAD L L, CHENG T, et al. Radiation-tolerant joining technologies for silicon carbide ceramics and composites[J]. Journal of Nuclear Materials, 2014, 448(1-3): 497-511. doi: 10.1016/j.jnucmat.2013.10.002
|
[12] |
刘俊凯,张新虎,恽迪. 事故容错燃料包壳候选材料的研究现状及展望[J]. 材料导报,2018, 32(11): 1757-1778. doi: 10.11896/j.issn.1005-023X.2018.11.001
|
[13] |
LAMON J. Properties and characteristics of SiC and SiC/SiC composites[J]. Comprehensive Nuclear Materials: Second Edition, 2020, 7: 400-418.
|
[14] |
TERRANI K A, PINT B A, PARISH C M, et al. Silicon Carbide Oxidation in Steam up to 2 MPa[J]. Journal of the American Ceramic Society, 2014, 97(8): 2331-52. doi: 10.1111/jace.13094
|
[15] |
OPILA E J. Oxidation and volatilization of silica formers in water vapor[J]. Journal of the American Ceramic Society, 2003, 86(8): 1238-1248. doi: 10.1111/j.1151-2916.2003.tb03459.x
|
[16] |
TEDMON C S JR. The effect of oxide volatilization on the oxidation kinetics of Cr and Fe-Cr alloys[J]. Journal of the Electrochemical Society, 1966, 113(8): 766. doi: 10.1149/1.2424115
|
[17] |
WU X, KOZLOWSKI T, HALES J D. Neutronics and fuel performance evaluation of accident tolerant FeCrAl cladding under normal operation conditions[J]. Annals of Nuclear Energy, 2015, 85: 763-775. doi: 10.1016/j.anucene.2015.06.032
|
[18] |
TERRANI K A, ZINKLE S J, SNEAD L L. Advanced oxidation-resistant iron-based alloys for LWR fuel cladding[J]. Journal of Nuclear Materials, 2014, 448(1): 420-35.
|
[19] |
MASSEY C P, TERRANI K A, DRYEPONDT S N, et al. Cladding burst behavior of Fe-based alloys under LOCA[J]. Journal of Nuclear Materials, 2016, 470: 128-138. doi: 10.1016/j.jnucmat.2015.12.018
|
[20] |
GAMBLE K A, BARANI T, PIZZOCRI D, et al. An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions[J]. Journal of Nuclear Materials, 2017, 491: 55-66. doi: 10.1016/j.jnucmat.2017.04.039
|
[21] |
RUSSCHER G E, MARSHALL R K, HESSON G M, et al. LOCA simulation in the NRU reactor: materials test-1: NUREG/CR-2152-V1[R]. Richland: Battelle Pacific Northwest Labs. , 1981.
|