Advance Search
Volume 45 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
Zhang Xiaochun, Shen Guangyao, Mei Le, Zhu Jialei, Li Congwei. Research on Underwater Laser Welding System and Welding Process of S32101 Duplex Stainless Steel Cladding in Spent Fuel Pool[J]. Nuclear Power Engineering, 2024, 45(5): 225-231. doi: 10.13832/j.jnpe.2024.05.0225
Citation: Zhang Xiaochun, Shen Guangyao, Mei Le, Zhu Jialei, Li Congwei. Research on Underwater Laser Welding System and Welding Process of S32101 Duplex Stainless Steel Cladding in Spent Fuel Pool[J]. Nuclear Power Engineering, 2024, 45(5): 225-231. doi: 10.13832/j.jnpe.2024.05.0225

Research on Underwater Laser Welding System and Welding Process of S32101 Duplex Stainless Steel Cladding in Spent Fuel Pool

doi: 10.13832/j.jnpe.2024.05.0225
  • Received Date: 2023-11-27
  • Rev Recd Date: 2024-02-01
  • Publish Date: 2024-10-14
  • In order to achieve high-quality underwater repair of spent fuel pool cladding defects in nuclear power plants, an underwater laser welding system with mobile positioning system, underwater laser-vision-wire feeding integrated equipment and mobile gas hood was developed based on underwater local dry laser welding technology. The underwater laser welding system was used to optimize the underwater welding process of the third generation nuclear spent fuel pool steel cladding (S32101 duplex stainless steel). The results show that the influence of water molecules on weld formation can be effectively reduced by using the drainage technology of equalizing flow pipe and simultaneous purging of groove. Using nitrogen as the protective gas for underwater welding of duplex stainless steel can increase the austenite content in the cladding layer and heat affected zone. The welding defects can be reduced by use of higher laser power, thus improving the stability of underwater local dry laser welding. The results of non-destructive testing and physical and chemical properties of welded specimens meet the requirements of welding standards for spent fuel pool construction, which proves the feasibility and reliability of the underwater laser welding system and welding process.

     

  • loading
  • [1]
    郭辉. 压水堆核电站乏燃料水池自动焊工艺研究与应用[J]. 电焊机,2019, 49(4): 274-278,282.
    [2]
    杨海峰,邵增,霍小东. 乏燃料贮存水池失冷条件下的临界安全研究[J]. 核科学与工程,2016, 36(5): 709-714,722. doi: 10.3969/j.issn.0258-0918.2016.05.021
    [3]
    赵迪,李光福,钟志民. 核电厂水池用不锈钢的腐蚀问题及相关研究[J]. 腐蚀与防护,2020, 41(9): 10-15. doi: 10.11973/fsyfh-202009002
    [4]
    王宇欣,胡月飞,高宇,等. 核电厂不锈钢覆面焊接模拟件腐蚀行为研究[J]. 核动力工程,2022, 43(3): 214-219.
    [5]
    COPINGER D A, OLAND C B, NAUS D J. A summary of aging effects and their management in reactor spent fuel pools, refueling cavities, Tori, and safety-related concrete structures: NUREG/CR-7111[R]. Washington: U. S. NRC, 2012: 85-93.
    [6]
    操丰,方江,唐世延,等. 核电厂换料水池304L不锈钢覆面开裂原因分析[J]. 核动力工程,2014, 35(2): 150-153.
    [7]
    SUN Z Q, YIN S H, CHEN Z B, et al. Analysis of the application of laser welding technology on maintenance of the underwater components of nuclear power station[J]. IOP Conference Series: Materials Science and Engineering, 2020, 730: 012008. doi: 10.1088/1757-899X/730/1/012008
    [8]
    闫国华. 反应堆压力容器接管安全端焊缝内壁水下干式修复焊技术研究[J]. 核科学与工程,2019, 39(6): 900-904. doi: 10.3969/j.issn.0258-0918.2019.06.006
    [9]
    马兆炫,刘一搏,王建峰,等. 双相不锈钢水下局部干法TIG焊接工艺[J]. 机械工程学报,2022, 58(4): 48-54.
    [10]
    LAI R, CAI Y, WU Y, et al. Influence of absorbed nitrogen on microstructure and corrosion resistance of 2205 duplex stainless steel joint processed by fiber laser welding[J]. Journal of Materials Processing Technology, 2016, 231: 397-405. doi: 10.1016/j.jmatprotec.2016.01.016
    [11]
    KESKITALO M, MÄNTYJÄRVI K, SUNDQVIST J, et al. Laser welding of duplex stainless steel with nitrogen as shielding gas[J]. Journal of Materials Processing Technology, 2015, 216: 381-384. doi: 10.1016/j.jmatprotec.2014.10.004
    [12]
    刘俊,曾超,赵林烨. 焊接工艺对双相钢焊缝宏观形貌及组织性能的影响[J]. 现代制造技术与装备,2021, 57(9): 55-59. doi: 10.3969/j.issn.1673-5587.2021.09.022
    [13]
    SUN K, ZENG M, SHI Y H, et al. Microstructure and corrosion behavior of S32101 stainless steel underwater dry and wet welded joints[J]. Journal of Materials Processing Technology, 2018, 256: 190-201. doi: 10.1016/j.jmatprotec.2018.02.018
    [14]
    RAMIREZ A J, LIPPOLD J C, BRANDI S D. The relationship between chromium nitride and secondary austenite precipitation in duplex stainless steels[J]. Metallurgical and Materials Transactions A, 2003, 34(8): 1575-1597. doi: 10.1007/s11661-003-0304-9
    [15]
    LIPPOLD J C, KOTECKI D J. Welding metallurgy and weldability of stainless steels[M]. Hoboken: John Wiley, 2005: 357-358.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (72) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return