Advance Search
Volume 46 Issue 3
Jun.  2025
Turn off MathJax
Article Contents
Liu Gangyang, Zhou Wenxiong, Huang Runzhi, Pan Liangming, Li Kang, Tan Xubin. Structure Analysis and Evaluation of the Ultrasonic Tomography System for Lead-Bismuth Two-Phase Flow[J]. Nuclear Power Engineering, 2025, 46(3): 288-294. doi: 10.13832/j.jnpe.2024.050025
Citation: Liu Gangyang, Zhou Wenxiong, Huang Runzhi, Pan Liangming, Li Kang, Tan Xubin. Structure Analysis and Evaluation of the Ultrasonic Tomography System for Lead-Bismuth Two-Phase Flow[J]. Nuclear Power Engineering, 2025, 46(3): 288-294. doi: 10.13832/j.jnpe.2024.050025

Structure Analysis and Evaluation of the Ultrasonic Tomography System for Lead-Bismuth Two-Phase Flow

doi: 10.13832/j.jnpe.2024.050025
  • Received Date: 2024-05-06
  • Rev Recd Date: 2024-06-04
  • Available Online: 2025-06-09
  • Publish Date: 2025-06-09
  • Following steam generator tube rupture (SGTR) accident in a Lead-Bismuth Fast Reactor, the gas-liquid two-phase flow phenomenon emerges within the reactor core. The ultrasonic tomography method for two-phase flow detection exhibits robust anti-interference capabilities. However, conventional ultrasonic sensors become ineffective at high temperatures. Therefore, a dual-modal ultrasonic tomography system based on waveguide rods is proposed. The waveguide rod structure prevents direct contact between the sensor and the high-temperature fluid, employing reflection and transmission methods to reconstruct the two-phase distribution. In combination with numerical simulation methods, an ultrasonic tomography system utilizing a 4 MHz ultrasonic frequency, a 58 mm waveguide rod, and an array of 24 ultrasonic sensors is ultimately determined. The imaging effects of different gas-phase distributions are investigated. The results indicate that, compared to gas-liquid two-phase flows in general, the ultrasonic tomography system exhibits greater advantages in liquid Lead-Bismuth two-phase flows. This system can effectively reconstruct the two-phase distribution with mean square errors within 6% and a minimum image correlation coefficient exceeding 85%.

     

  • loading
  • [1]
    刘莉,袁俊杰,顾汉洋,等. 铅铋快堆SGTR事故下高压过冷水注入高温铅铋合金流动传热数值模拟研究[J]. 核动力工程,2023, 44(4): 55-64.
    [2]
    YU Q F, ZHANG Y, WANG C L, et al. Numerical simulation of bubble transport during steam generator tube rupture accident of Lead-cooled Fast Reactor[J]. Annals of Nuclear Energy, 2021, 153: 108066. doi: 10.1016/j.anucene.2020.108066
    [3]
    谭超,董峰. 多相流过程参数检测技术综述[J]. 自动化学报,2013, 39(11): 1923-1932.
    [4]
    ZAKARIA Z, RAHIMAN M H F, RAHIM R A. Simulation of the two-phase liquid–gas flow through ultrasonic transceivers application in ultrasonic tomography[J]. Sensors & Transducers Journal, 2010, 112(1): 24-38.
    [5]
    RAHIMAN M H F, RAHIM R A, RAHIM H A, et al. An investigation on chemical bubble column using ultrasonic tomography for imaging of gas profiles[J]. Sensors and Actuators B: Chemical, 2014, 202: 46-52. doi: 10.1016/j.snb.2014.05.043
    [6]
    LI N, XU K. Simulation study on ultrasonic tomography in bubbly gas/liquid two-phase flow[C]//2017 IEEE International Conference on Imaging Systems and Techniques (IST). Beijing: IEEE, 2017: 1-6.
    [7]
    MURAKAWA H, SHIMIZU T, ECKERT S. Development of a high-speed ultrasonic tomography system for measurements of rising bubbles in a horizontal cross-section[J]. Measurement, 2021, 182: 109654. doi: 10.1016/j.measurement.2021.109654
    [8]
    王健. 高温环境下超声波声速检测系统设计[D]. 太原: 中北大学,2017.
    [9]
    ECKERT S, GERBETH G, MELNIKOV V I. Velocity measurements at high temperatures by ultrasound Doppler velocimetry using an acoustic wave guide[J]. Experiments in Fluids, 2003, 35(5): 381-388. doi: 10.1007/s00348-003-0606-0
    [10]
    KAŽYS R, MAŽEIKA L, BARAUSKAS R, et al. Evaluation of diffraction errors in precise pulse-echo measurements of ultrasound velocity in chambers with waveguide[J]. Ultrasonics, 2002, 40(1-8): 853-858. doi: 10.1016/S0041-624X(02)00226-3
    [11]
    刘皓,谭超,董峰. 基于高斯回归预测的超声成像高分辨率重建[J]. 中国科学院大学学报,2020, 37(2): 234-241. doi: 10.7523/j.issn.2095-6134.2020.02.013
    [12]
    STEINER G, DEINHAMMER C. Ultrasonic time-of-flight techniques for monitoring multi-component processes[J]. E & I Elektrotechnik und Informationstechnik, 2009, 126(5): 200-205.
    [13]
    李菲菲. 超声波层析成像的图像重建算法研究[D]. 沈阳: 东北大学,2011.
    [14]
    李潇. 基于工业总线的双模态超声层析成像系统设计[D]. 天津: 天津大学,2018.
    [15]
    田昌,苏明旭,顾建飞. 气固两相流超声过程层析成像系统研究[J]. 仪器仪表学报,2016, 37(3): 586-592. doi: 10.3969/j.issn.0254-3087.2016.03.015
    [16]
    KAŽYS R , VOLEISIS A, SLITERIS R, et al. Ultrasonic transducers for high temperature applications in accelerator driven reactors[C]. Paris, France: 5th World Congress on Ultrasonics WCU2003, 2003.
    [17]
    邵一哲,谭超,董峰. 油水两相流超声测试机理仿真建模[J]. 中南大学学报: 自然科学版,2018, 49(4): 987-994.
    [18]
    LOSEV G, KOLESNICHENKO I. The influence of the waveguide on the quality of measurements with ultrasonic Doppler velocimetry[J]. Flow Measurement and Instrumentation, 2020, 75: 101786. doi: 10.1016/j.flowmeasinst.2020.101786
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (13) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return