Advance Search
Volume 46 Issue 3
Jun.  2025
Turn off MathJax
Article Contents
Gong Tao, Zhang Luteng, Ma Zaiyong, Sun Wan, Zhu Longxiang, Lian Qiang, Tang Simiao, Pan Liangming. Study on the Dynamic Melting Characteristics of Coating Exposed to Non-eutectic Corium in Nuclear Reactor[J]. Nuclear Power Engineering, 2025, 46(3): 111-117. doi: 10.13832/j.jnpe.2024.050035
Citation: Gong Tao, Zhang Luteng, Ma Zaiyong, Sun Wan, Zhu Longxiang, Lian Qiang, Tang Simiao, Pan Liangming. Study on the Dynamic Melting Characteristics of Coating Exposed to Non-eutectic Corium in Nuclear Reactor[J]. Nuclear Power Engineering, 2025, 46(3): 111-117. doi: 10.13832/j.jnpe.2024.050035

Study on the Dynamic Melting Characteristics of Coating Exposed to Non-eutectic Corium in Nuclear Reactor

doi: 10.13832/j.jnpe.2024.050035
  • Received Date: 2024-05-20
  • Rev Recd Date: 2024-11-29
  • Available Online: 2025-06-09
  • Publish Date: 2025-06-09
  • To investigate the melting characteristics of the corium and coating materials in the reactor, the liquid NaNO3-KNO3 mixture is used as the corium and solid KNO3 is used as the coating material to conduct experimental research on the dynamic melting characteristics of the coating. The results show that the melting process can be divided into three stages: corium quench solidification and remelting, diffusive melting of coating components and melting termination. In the process of melting, component diffusion is observed at the phase interface, and the instantaneous liquidus temperature at the phase interface is higher than that of the molten pool, resulting in the coating melting even when the phase interface temperature is lower than the melting point of the coating. On the basis of experiments, a melting characteristic model is established based on the heat and mass transfer relationship. The maximum error of component concentration and phase interface temperature is 4.5% and 11.3%, which proves the accuracy of the model.

     

  • loading
  • [1]
    GUSAROV V V, AL’MYASHEV V I, BESHTA S V. Sacrificial materials for safety systems of nuclear power stations: a new class of functional materials[J]. Thermal Engineering, 2001, 48(9): 721-724.
    [2]
    CAO X Q, VASSEN R, STOEVER D. Ceramic materials for thermal barrier coatings[J]. Journal of the European Ceramic Society, 2004, 24(1): 1-10. doi: 10.1016/S0955-2219(03)00129-8
    [3]
    AKOPOV F A, BORODINA T I, VAL'YANO G E, et al. Interaction of the metallic components of melt in a reactor core with zirconium dioxide ceramic[J]. Atomic Energy, 1995, 79(6): 857-862. doi: 10.1007/BF02415478
    [4]
    AKOPOV F A, AKOPYAN A A, BARYKIN B M, et al. Behavior of plasma-sprayed zirconium dioxide ceramic under the thermochemical effect of components of the reactor core melt[J]. Atomic Energy, 1998, 85(2): 540-543. doi: 10.1007/BF02359931
    [5]
    SLABKII V D, TRAKTUEV O M, KHRULEV A A, et al. Interaction of a model melt of a reactor core with zirconium dioxide ceramic with different porosity[J]. Atomic Energy, 2000, 88(4): 274-280. doi: 10.1007/BF02673610
    [6]
    MINEEV V N, AKOPOV F A, VLASOV A S, et al. Optimization of the materials composition in external core catchers for nuclear reactors[J]. Atomic Energy, 2002, 93(5): 872-879. doi: 10.1023/A:1022451520006
    [7]
    RAVI SHANKAR A, VETRIVENDAN E, SHUKLA P K, et al. Characterisation of ceramic-coated 316LN stainless steel exposed to high-temperature thermite melt and molten sodium[J]. Journal of Materials Engineering and Performance, 2017, 26(11): 5272-5283. doi: 10.1007/s11665-017-2933-y
    [8]
    PLEVACOVA K, JOURNEAU C, PILUSO P, et al. Eutectic crystallization in the UO2–Al2O3–HfO2 ceramic phase diagram[J]. Ceramics International, 2014, 40(2): 2565-2573. doi: 10.1016/j.ceramint.2013.08.047
    [9]
    BECHTA S ,GRANOVSKY V ,KHABENSKY V, et al. Corium phase equilibria based on MASCA, METCOR and CORPHAD results [J]. Nuclear Engineering and Design, 2008, 238 (10): 2761-2771.
    [10]
    KHABENSKY V B, GRANOVSKY V S, ALMJASHEV V I, et al. Effect of temperature gradient on chemical element partitioning in corium pool during in-vessel retention[J]. Nuclear Engineering and Design, 2018, 327: 82-91. doi: 10.1016/j.nucengdes.2017.11.030
    [11]
    DINH T N, KONOVALIKHIN M J, SEHGAL B R. Core melt spreading on a reactor containment floor[J]. Progress in Nuclear Energy, 2000, 36(4): 405-468. doi: 10.1016/S0149-1970(00)00088-3
    [12]
    GAUS-LIU X, MIASSOEDOV A, CRON T, et al. In-vessel melt pool coolibility test—Description and results of LIVE experiments[J]. Nuclear Engineering and Design, 2010, 240(11): 3898-3903. doi: 10.1016/j.nucengdes.2010.09.001
    [13]
    ZHANG L T, ZHANG Y P, ZHOU Y K, et al. COPRA experiments on natural convection heat transfer in a volumetrically heated slice pool with high Rayleigh numbers[J]. Annals of Nuclear Energy, 2016, 87: 81-88. doi: 10.1016/j.anucene.2015.08.021
    [14]
    RETTENMAYR M. Melting and remelting phenomena[J]. International Materials Reviews, 2009, 54(1): 1-17. doi: 10.1179/174328009X392930
    [15]
    SEILER J M, FROMENT K. Material effects on multiphase phenomena in late phases of severe accidents of nuclear reactors[J]. Multiphase Science and Technology, 2000, 12(2): 117-257.
    [16]
    PHAM Q T, SEILER J M, COMBEAU H, et al. Modeling of heat transfer and solidification in LIVE L3A experiment[J]. International Journal of Heat and Mass Transfer, 2013, 58(1-2): 691-701. doi: 10.1016/j.ijheatmasstransfer.2012.11.030
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (20) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return