Citation: | Tang Simiao, Lian Qiang, Zhu Longxiang, Zhang Luteng, Sun Wan, Ma Zaiyong, Pan Liangming. Design and Optimization of Cascaded Thermoelectric Generators Based on Heat Pipe Reactor Applications[J]. Nuclear Power Engineering, 2025, 46(3): 103-110. doi: 10.13832/j.jnpe.2024.050037 |
[1] |
霍蒙,吴舸,袁宏,等. 温差发电技术研究综述[J]. 科技与创新,2020(10): 94-95,97.
|
[2] |
陈伟,梁燕,胡长军,等. 新型温差发电装置的结构设计[J]. 热能动力工程,2016, 31(3): 125-128.
|
[3] |
ZHANG Q H, ZHOU Z X, DYLLA M, et al. Realizing high-performance thermoelectric power generation through grain boundary engineering of skutterudite-based nanocomposites[J]. Nano Energy, 2017, 41: 501-510. doi: 10.1016/j.nanoen.2017.10.003
|
[4] |
SHI X L, ZOU J, CHEN Z G. Advanced thermoelectric design: from materials and structures to devices[J]. Chemical Reviews, 2020, 120(15): 7399-7515. doi: 10.1021/acs.chemrev.0c00026
|
[5] |
XING Y F, LIU R H, SUN Y Y, et al. Self-propagation high-temperature synthesis of half-Heusler thermoelectric materials: reaction mechanism and applicability[J]. Journal of Materials Chemistry A, 2018, 6(40): 19470-19478. doi: 10.1039/C8TA07411A
|
[6] |
张骐昊,柏胜强,陈立东. 热电发电器件与应用技术: 现状、挑战与展望[J]. 无机材料学报,2019, 34(3): 279-293.
|
[7] |
CHU J, HUANG J, LIU R H, et al. Electrode interface optimization advances conversion efficiency and stability of thermoelectric devices[J]. Nature Communications, 2020, 11(1): 2723. doi: 10.1038/s41467-020-16508-x
|