Advance Search
Volume 46 Issue 3
Jun.  2025
Turn off MathJax
Article Contents
Tang Simiao, Lian Qiang, Zhu Longxiang, Zhang Luteng, Sun Wan, Ma Zaiyong, Pan Liangming. Design and Optimization of Cascaded Thermoelectric Generators Based on Heat Pipe Reactor Applications[J]. Nuclear Power Engineering, 2025, 46(3): 103-110. doi: 10.13832/j.jnpe.2024.050037
Citation: Tang Simiao, Lian Qiang, Zhu Longxiang, Zhang Luteng, Sun Wan, Ma Zaiyong, Pan Liangming. Design and Optimization of Cascaded Thermoelectric Generators Based on Heat Pipe Reactor Applications[J]. Nuclear Power Engineering, 2025, 46(3): 103-110. doi: 10.13832/j.jnpe.2024.050037

Design and Optimization of Cascaded Thermoelectric Generators Based on Heat Pipe Reactor Applications

doi: 10.13832/j.jnpe.2024.050037
  • Received Date: 2024-04-25
  • Rev Recd Date: 2024-08-13
  • Available Online: 2025-06-09
  • Publish Date: 2025-06-09
  • Based on the application background of silent heat pipe cooled reactor (heat pipe reactor), combined with the geometric structure and thermal boundary conditions of the energy conversion system of heat pipe reactor, the two-stage and three-stage cascaded thermoelectric generators (TEG) are designed and optimized using finite element method. The conversion efficiency and output power of cascaded TEG under different heat flux density conditions are studied. The research results indicate that the conversion efficiency can be effectively improved by optimizing the structure of different materials inside the PN legs of multi-stage cascaded TEG. For the two-stage TEG composed of skutterudite materials and half-heusler materials, the conversion efficiency can reach 15.05% under the hot-end boundary condition with a heat flux of 162.5 kW/m2. For the three-stage TEG composed of bismuth telluride, skutterudite and half-heusler, the conversion efficiency can reach 15.13% under the hot end boundary condition with a heat flux of 90 kW/m2.

     

  • loading
  • [1]
    霍蒙,吴舸,袁宏,等. 温差发电技术研究综述[J]. 科技与创新,2020(10): 94-95,97.
    [2]
    陈伟,梁燕,胡长军,等. 新型温差发电装置的结构设计[J]. 热能动力工程,2016, 31(3): 125-128.
    [3]
    ZHANG Q H, ZHOU Z X, DYLLA M, et al. Realizing high-performance thermoelectric power generation through grain boundary engineering of skutterudite-based nanocomposites[J]. Nano Energy, 2017, 41: 501-510. doi: 10.1016/j.nanoen.2017.10.003
    [4]
    SHI X L, ZOU J, CHEN Z G. Advanced thermoelectric design: from materials and structures to devices[J]. Chemical Reviews, 2020, 120(15): 7399-7515. doi: 10.1021/acs.chemrev.0c00026
    [5]
    XING Y F, LIU R H, SUN Y Y, et al. Self-propagation high-temperature synthesis of half-Heusler thermoelectric materials: reaction mechanism and applicability[J]. Journal of Materials Chemistry A, 2018, 6(40): 19470-19478. doi: 10.1039/C8TA07411A
    [6]
    张骐昊,柏胜强,陈立东. 热电发电器件与应用技术: 现状、挑战与展望[J]. 无机材料学报,2019, 34(3): 279-293.
    [7]
    CHU J, HUANG J, LIU R H, et al. Electrode interface optimization advances conversion efficiency and stability of thermoelectric devices[J]. Nature Communications, 2020, 11(1): 2723. doi: 10.1038/s41467-020-16508-x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (12) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return