Advance Search
Volume 46 Issue 3
Jun.  2025
Turn off MathJax
Article Contents
Liu Yisong, Liu Caixue, Zhou Chengning, Luo Neng, Yan Jihong, Zeng Qiang. Comparative Study on Vibration Prediction Methods of Reactor Internals Based on Neutron Noise Characteristic Frequency Time-Series Signal[J]. Nuclear Power Engineering, 2025, 46(3): 253-259. doi: 10.13832/j.jnpe.2024.050042
Citation: Liu Yisong, Liu Caixue, Zhou Chengning, Luo Neng, Yan Jihong, Zeng Qiang. Comparative Study on Vibration Prediction Methods of Reactor Internals Based on Neutron Noise Characteristic Frequency Time-Series Signal[J]. Nuclear Power Engineering, 2025, 46(3): 253-259. doi: 10.13832/j.jnpe.2024.050042

Comparative Study on Vibration Prediction Methods of Reactor Internals Based on Neutron Noise Characteristic Frequency Time-Series Signal

doi: 10.13832/j.jnpe.2024.050042
  • Received Date: 2024-05-16
  • Rev Recd Date: 2024-11-12
  • Available Online: 2025-06-09
  • Publish Date: 2025-06-09
  • The vibration status of reactor internals is directly related to the operational safety and the maintenance node of nuclear power plant. Therefore, it is important to analyze and predict the vibration of these internals. This paper proposes a method for predicting the vibration of reactor internals based on the time-series signals of neutron noise characteristic frequency bands. The method, from two perspectives of single-cycle and double-cycle, utilizes statistical learning and machine learning methods for prediction, and an experiment was conducted using neutron noise signals collected from a nuclear power plant. The results show that, in terms of analysis methods, the processing of characteristic frequency band time-series signals can effectively utilize the temporal information in the signals. In terms of prediction methods, statistical learning models achieve higher accuracy for single-cycle prediction while machine learning models achieve higher accuracy for double-cycle prediction.Therefore, the combination of characteristic frequency band time-series signal analysis methods and appropriate prediction models can provide guidance for the prediction and determination of maintenance nodes in nuclear power plants.

     

  • loading
  • [1]
    杨泰波,刘才学,罗婷,等. 基于功率密度谱的压水堆核电厂中子噪声特性研究[J]. 核动力工程,2018, 39(3): 181-183.
    [2]
    周正平. 核电厂反应堆燃料组件振动监测和诊断[J]. 中国核电,2023, 16(3): 411-416.
    [3]
    龚禾林,陈长,赵文博,等. 基于SP3方法的动力堆中子噪声分析程序研究[J]. 核科学与工程,2021, 41(3): 491-499. doi: 10.3969/j.issn.0258-0918.2021.03.007
    [4]
    刘才学,罗能,何攀,等. 反应堆关键设备健康监测与故障诊断技术研究进展[J]. 核动力工程,2023, 44(3): 8-20.
    [5]
    LIU J X, YU D P, YANG T B, et al. Discovering the causes for the change of the vibration characteristics of the core support barrel in PWR nuclear power plants: a combined investigation based on ex-core neutron noise analysis and numerical modal analysis[J]. Reliability Engineering & System Safety, 2023, 234: 109190.
    [6]
    杨泰波,刘才学,罗婷,等. 基于中子噪声分析的某核电厂堆芯吊篮梁型振动特征研究[J]. 核科学与工程,2017, 37(1): 42-47. doi: 10.3969/j.issn.0258-0918.2017.01.008
    [7]
    童强,张克功,杜吉梁. 指数平滑预测法及其在经济预测中的应用[J]. 经济研究导刊,2013(4): 11-12,74. doi: 10.3969/j.issn.1673-291X.2013.04.005
    [8]
    邓聚龙. 社会经济灰色系统的理论与方法[J]. 中国社会科学,1984(6): 47-60.
    [9]
    KONTOPOULOU V I, PANAGOPOULOS A D, KAKKOS I, et al. A review of ARIMA vs. machine learning approaches for time series forecasting in data driven networks[J]. Future Internet, 2023, 15(8): 255. doi: 10.3390/fi15080255
    [10]
    NUÑEZ Y, LOVISOLO L, DA SILVA MELLO L, et al. On the interpretability of machine learning regression for path-loss prediction of millimeter-wave links[J]. Expert Systems with Applications, 2023, 215: 119324. doi: 10.1016/j.eswa.2022.119324
    [11]
    AKSHAY A, ABEDI M, SHEKARCHIZADEH N, et al. MLcps: machine learning cumulative performance score for classification problems[J]. GigaScience, 2023, 12: giad108.
    [12]
    ZHOU C N, XIAO N C, ZUO M J, et al. An active Kriging-based learning method for hybrid reliability analysis[J]. IEEE Transactions on Reliability, 2022, 71(4): 1567-1576. doi: 10.1109/TR.2021.3111926
    [13]
    武永强,刘正刚. 基于决策树的工业通信网全链路数据异常检测方法[J]. 电子设计工程,2024, 32(9): 138-141,146.
    [14]
    孙永平,王立峰,张震伟,等. 基于随机森林回归的火电机组供电煤耗遗传优化模型[J]. 信息通信技术与政策,2021, 47(3): 76-82. doi: 10.12267/j.issn.2096-5931.2021.03.013
    [15]
    王钰涵,郑旭,周南,等. 基于EMD和KNN的发动机辐射噪声预测研究[J]. 现代机械,2024(1): 1-5.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (10) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return