Citation: | Zeng Fulin, Zhao Pengcheng, Li Lingli, Liu Zijing, Li Wei. Nonlinear Reduced-order Analysis of Three-dimensional Thermal Stratification in the Upper Plenum of Lead-bismuth Cooled Fast Reactor Based on Graph Neural Network[J]. Nuclear Power Engineering, 2025, 46(3): 86-94. doi: 10.13832/j.jnpe.2024.050044 |
[1] |
WU Z Y, LU C H, MORGAN S, et al. A status review on the thermal stratification modeling methods for Sodium-cooled Fast Reactors[J]. Progress in Nuclear Energy, 2020, 125: 103369. doi: 10.1016/j.pnucene.2020.103369
|
[2] |
DONG Z Y, QIU H R, WANG M J, et al. Numerical simulation on the thermal stratification in the lead pool of lead-cooled fast reactor (LFR)[J]. Annals of Nuclear Energy, 2022, 174: 109176. doi: 10.1016/j.anucene.2022.109176
|
[3] |
魏诗颖,王成龙,田文喜,等. 铅基快堆关键热工水力问题研究综述[J]. 原子能科学技术,2019, 53(2): 326-336. doi: 10.7538/yzk.2018.youxian.0335
|
[4] |
ZHANG Y, WANG C L, LAN Z K, et al. Review of thermal-hydraulic issues and studies of lead-based fast reactors[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109625. doi: 10.1016/j.rser.2019.109625
|
[5] |
ZWIJSEN K, UITSLAG-DOOLAARD H, ROELOFS F, et al. Fast reactor multi-scale and multi-physics modelling at NRG[J]. Nuclear Engineering and Design, 2023, 410: 112389. doi: 10.1016/j.nucengdes.2023.112389
|
[6] |
LUO X, WANG C, ZOU Z R, et al. Development and application of a multi-physics and multi-scale coupling program for lead-cooled fast reactor[J]. Nuclear Science and Techniques, 2022, 33(2): 18. doi: 10.1007/s41365-022-01008-y
|
[7] |
柏云清,李文博,李文东,等. 池式铅基堆热分层现象研究综述[J]. 核科学与工程,2023, 43(2): 286-297. doi: 10.3969/j.issn.0258-0918.2023.02.007
|
[8] |
LIU D X, MARTHALER P G, CLASS A G, et al. Simulation of stratification phenomena with a spectral Fourier–Chebyshev method on the background of a lead-cooled fast reactor[J]. Annals of Nuclear Energy, 2023, 192: 109931. doi: 10.1016/j.anucene.2023.109931
|
[9] |
HU R. Development of a reduced-order three-dimensional flow model for thermal mixing and stratification simulation during reactor transients: AC02-06CH11357[R]. Argonne: Argonne National Lab., 2017.
|
[10] |
ZOU L, NUNEZ D, HU R. Development and validation of SAM multi-dimensional flow model for thermal mixing and stratification modeling: ANL-NSE-20/19[R]. Argonne: Argonne National Lab., 2020.
|
[11] |
HU R. Progress report on SAM reduced-order model development for thermal stratification and mixing during reactor transients: ANL/NE-17/29[R]. Argonne: Argonne National Lab., 2017.
|
[12] |
HU R. Three-dimensional flow model development for thermal mixing and stratification modeling in reactor system transients analyses[J]. Nuclear Engineering and Design, 2019, 345: 209-215. doi: 10.1016/j.nucengdes.2019.02.018
|
[13] |
LORENZI S, CAMMI A, LUZZI L, et al. A reduced order model for investigating the dynamics of the Gen-IV LFR coolant pool[J]. Applied Mathematical Modelling, 2017, 46: 263-284. doi: 10.1016/j.apm.2017.01.066
|
[14] |
杨涛,赵鹏程,赵亚楠,等. 基于CFD的铅铋快堆上腔室降阶热分层模型开发[J]. 核动力工程,2023, 44(2): 48-53.
|
[15] |
YANG T, ZHAO P C, ZHAO Y N, et al. Development of reduced-order thermal stratification model for upper plenum of a lead–bismuth fast reactor based on CFD[J]. Nuclear Engineering and Technology, 2023, 55(8): 2835-2843. doi: 10.1016/j.net.2023.05.002
|
[16] |
FUKAMI K, NAKAMURA T, FUKAGATA K. Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data[J]. Physics of Fluids, 2020, 32(9): 095110. doi: 10.1063/5.0020721
|
[17] |
HU J W, ZHANG W W. Mesh-Conv: convolution operator with mesh resolution independence for flow field modeling[J]. Journal of Computational Physics, 2022, 452: 110896. doi: 10.1016/j.jcp.2021.110896
|
[18] |
KASHEFI A, REMPE D, GUIBAS L J. A point-cloud deep learning framework for prediction of fluid flow fields on irregular geometries[J]. Physics of Fluids, 2021, 33(2): 027104. doi: 10.1063/5.0033376
|
[19] |
BARWEY S, SHANKAR V, VISWANATHAN V, et al. Multiscale graph neural network autoencoders for interpretable scientific machine learning[J]. Journal of Computational Physics, 2023, 495: 112537. doi: 10.1016/j.jcp.2023.112537
|
[20] |
PICHI F, MOYA B, HESTHAVEN J S. A graph convolutional autoencoder approach to model order reduction for parametrized PDEs[J]. Journal of Computational Physics, 2024, 501: 112762. doi: 10.1016/j.jcp.2024.112762
|
[21] |
TOMCHIK C, VEGENDLA P, BUCKNOR M, et al. Benchmark specification for select experiments conducted at the university of Wisconsin-Madison thermal stratification test facility: ANL-ART-253[R]. Argonne: Argonne National Lab., 2022.
|