Advance Search
Volume 45 Issue 6
Dec.  2024
Turn off MathJax
Article Contents
Li Yingjie, Xia Zhaodong, Zhang Geng, Sun Mingze, Ning Tong, Pan Cuijie, Ma Xiaodi, Sun Xu. Research on Rapid Analysis Method of Ex-core Detector Response Based on BP Neural-network Algorithm[J]. Nuclear Power Engineering, 2024, 45(6): 15-21. doi: 10.13832/j.jnpe.2024.06.0015
Citation: Li Yingjie, Xia Zhaodong, Zhang Geng, Sun Mingze, Ning Tong, Pan Cuijie, Ma Xiaodi, Sun Xu. Research on Rapid Analysis Method of Ex-core Detector Response Based on BP Neural-network Algorithm[J]. Nuclear Power Engineering, 2024, 45(6): 15-21. doi: 10.13832/j.jnpe.2024.06.0015

Research on Rapid Analysis Method of Ex-core Detector Response Based on BP Neural-network Algorithm

doi: 10.13832/j.jnpe.2024.06.0015
  • Received Date: 2024-01-08
  • Rev Recd Date: 2024-09-06
  • Publish Date: 2024-12-17
  • The response of the ex-core detector describes the corresponding relationship between neutron fluence rate and current signal, which plays a crucial role in the safe operation of the reactor. In response to the problem that both deterministic and Monte Carlo methods cannot balance computational efficiency and accuracy in calculating the response of ex-core detectors, a back propagation (BP) neural network algorithm is used to quickly calculate the response of ex-core detectors. Based on the core design system CMS, the physical modeling of the existing million-kilowatt pressurized water reactor core in China was carried out. The fuel assembly arrangement and burnup changes in the core are used as the inputs of the BP neural network, and the corresponding fuel assembly arrangement and detector responses outside the reactor under different burnup are used as the outputs of the BP neural network. A three-layer BP neural network model is constructed and optimized. After calculation verification, the optimized model can quickly calculate the response of the ex-core detector, and the predicted value has a smaller error compared to the core design system CMS calculation value. It has good engineering application prospects, providing a new idea for calculating the response of the ex-core detector.

     

  • loading
  • [1]
    SERRA P L S, MASOTTI P H F, ROCHA M S, et al. Two-phase flow void fraction estimation based on bubble image segmentation using randomized Hough transform with neural network (RHTN)[J]. Progress in Nuclear Energy, 2020, 118: 103133. doi: 10.1016/j.pnucene.2019.103133
    [2]
    徐龙飞,沈华韵,魏军侠,等. 去射线效应堆外探测器响应函数计算研究[J]. 原子能科学技术,2020, 54(8): 1460-1467. doi: 10.7538/yzk.2019.youxian.0521
    [3]
    丁谦学,梅其良. 堆外探测器响应函数三维空间分布计算[J]. 强激光与粒子束,2017, 29(3): 036013. doi: 10.11884/HPLPB201729.160191
    [4]
    丁谦学,夏春梅,梅其良. CAP1000核电厂堆外探测器响应函数计算方法研究[J]. 核科学与工程,2016, 36(2): 257-262. doi: 10.3969/j.issn.0258-0918.2016.02.018
    [5]
    林海鹏,李国栋,陈法国,等. BP神经网络算法预测多组分材料中子屏蔽效果方法研究[J]. 辐射防护,2020, 40(6): 516-521.
    [6]
    于志翔,邹树梁,徐守龙,等. 基于BP神经网络的船用反应堆屏蔽设计快速计算功能研究[J]. 核电子学与探测技术,2016, 36(2): 209-213. doi: 10.3969/j.issn.0258-0934.2016.02.022
    [7]
    王端,王威策,潘翠杰,等. 基于自适应BP神经网络的压水堆堆芯换料关键参数的预测方法[J]. 原子能科学技术,2020, 54(1): 112-118. doi: 10.7538/yzk.2019.youxian.0016
    [8]
    周旭华,李富,韩松,等. 堆外探测器读数与堆内功率分布的关系研究[J]. 核电子学与探测技术,2010, 30(2): 166-170. doi: 10.3969/j.issn.0258-0934.2010.02.004
    [9]
    ZHOU L W, GARG D, QIU Y, et al. Machine learning algorithms to predict flow condensation heat transfer coefficient in mini/micro-channel utilizing universal data[J]. International Journal of Heat and Mass Transfer, 2020, 162: 120351. doi: 10.1016/j.ijheatmasstransfer.2020.120351
    [10]
    韦子豪,王端,王东东,等. 神经网络-遗传复合算法在压水堆堆芯换料设计中的应用[J]. 原子能科学技术,2020, 54(5): 825-834. doi: 10.7538/yzk.2019.youxian.0788
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(6)

    Article Metrics

    Article views (22) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return