Citation: | Cai Yuntong, Zhao Houjian, Li Xiaowei, Su Yang, Lu Yiming, Guo Zhangpeng, Liu Fang. Modified SST k-ω-γ Model and Prediction of Laminar to Turbulent Flow Transition in Helical Tube[J]. Nuclear Power Engineering, 2024, 45(6): 55-62. doi: 10.13832/j.jnpe.2024.06.0055 |
[1] |
ZHAO H J, LI X W, WU X X. New friction factor equations developed for turbulent flows in rough helical tubes[J]. International Journal of Heat and Mass Transfer, 2016, 95: 525-534. doi: 10.1016/j.ijheatmasstransfer.2015.12.035
|
[2] |
ZHAO H J, LI X W, WU X X. New friction factor and Nusselt number equations for turbulent convection of liquids with variable properties in circular tubes[J]. International Journal of Heat and Mass Transfer, 2018, 124: 454-462. doi: 10.1016/j.ijheatmasstransfer.2018.03.082
|
[3] |
李晓伟,吴莘馨,张作义,等. 高温气冷堆示范工程螺旋管式直流蒸汽发生器工程验证试验[J]. 清华大学学报: 自然科学版,2021, 61(4): 329-337.
|
[4] |
LI X W, GAO W K, SU Y, et al. Thermal analysis of HTGR helical tube once through steam generators using 1D and 2D methods[J]. Nuclear Engineering and Design, 2019, 355: 110352. doi: 10.1016/j.nucengdes.2019.110352
|
[5] |
LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(2): 2894-2906.
|
[6] |
CONTENT C, HOUDEVILLE R. Application of the γ-Rθ laminar-turbulent transition model in Navier-Stokes computations[C]//40th Fluid Dynamics Conference and Exhibit. Chicago: AIAA, 2010.
|
[7] |
MALAN P, SULUKSNA K, JUNTASARO E. Calibrating the γ-Reθ transition model for commercial CFD[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Orlando: AIAA, 2009.
|
[8] |
GRABE C, KRUMBEIN A. Extension of the γ-Reθt model for prediction of crossflow transition[C]//52nd Aerospace Sciences Meeting. National Harbor: AIAA, 2014.
|
[9] |
MEDIDA S, BAEDER J. A new crossflow transition onset criterion for RANS turbulence models[C]//21st AIAA Computational Fluid Dynamics Conference. San Diego: AIAA, 2013.
|
[10] |
DASSLER P, KOZULOVIC D, FIALA A. Transport equation for roughness effects on laminar-turbulent transition[C]//The 15th International Conference on Fluid Flow Technologies. Budapest, Hungary: CMFF, 2012.
|
[11] |
MENTER F R, SMIRNOV P E, LIU T, et al. A one-equation local correlation-based transition model[J]. Flow, Turbulence and Combustion, 2015, 95(4): 583-619. doi: 10.1007/s10494-015-9622-4
|
[12] |
ABRAHAM J P, SPARROW E M, GORMAN J M, et al. Application of an intermittency model for laminar, transitional, and turbulent internal flows[J]. Journal of Fluids Engineering, 2019, 141(7): 071204. doi: 10.1115/1.4042664
|
[13] |
DI PIAZZA I, CIOFALO M. Transition to turbulence in toroidal pipes[J]. Journal of Fluid Mechanics, 2011, 687: 72-117. doi: 10.1017/jfm.2011.321
|
[14] |
ZHAO H J, LI X W, WU Y J, et al. Friction factor and Nusselt number correlations for forced convection in helical tubes[J]. International Journal of Heat and Mass Transfer, 2020, 155: 119759. doi: 10.1016/j.ijheatmasstransfer.2020.119759
|
[15] |
ITO H. Theoretical and experimental investigation concerning the flow through curved pipes[C]//Mem Inst High Speed Mech. Tohoku University, 1959.
|
[16] |
MORI Y, NAKAYAMA W. Study of forced convective heat transfer in curved pipes (2nd report, turbulent region)[J]. International Journal of Heat and Mass Transfer, 1967, 10(1): 37-59.
|