Advance Search
Volume 45 Issue 6
Dec.  2024
Turn off MathJax
Article Contents
Liang Bo, Zhang Meng, Sun Lanxin, Wang Jingyang, Lin Rushan, Han Wei, Jiao Caishan. Simulation Study on Concentration Polarization and Electrode Kinetics during Electrorefining of Uranium[J]. Nuclear Power Engineering, 2024, 45(6): 121-131. doi: 10.13832/j.jnpe.2024.06.0121
Citation: Liang Bo, Zhang Meng, Sun Lanxin, Wang Jingyang, Lin Rushan, Han Wei, Jiao Caishan. Simulation Study on Concentration Polarization and Electrode Kinetics during Electrorefining of Uranium[J]. Nuclear Power Engineering, 2024, 45(6): 121-131. doi: 10.13832/j.jnpe.2024.06.0121

Simulation Study on Concentration Polarization and Electrode Kinetics during Electrorefining of Uranium

doi: 10.13832/j.jnpe.2024.06.0121
  • Received Date: 2023-12-05
  • Rev Recd Date: 2024-02-22
  • Publish Date: 2024-12-17
  • A concentration-dependent Butler-Volmer electrode kinetics equation was established by correlating concentration with the overpotential through the Nernst equation. The mass transfer equation and potential distribution equation were optimized based on the supporting electrolyte theory, and the uranium electrorefining model was improved. The cyclic voltammetry curve, constant potential deposition process and constant current deposition process were simulated by using the new model, and the concentration polarization phenomenon and electrode dynamic behavior under different electrolytic conditions were quantitatively analyzed. The simulated cyclic voltammetry curve is in good agreement with the experimental results, verifying the accuracy of the model. Through modeling, the distributions of U(III) concentration, potential, and current density in the molten salt and on the surface of electrode were obtained. The key parameters such as diffusion layer thickness, limiting diffusion current and deposition layer thickness were predicted, and the driving force changes caused by concentration polarization during constant current deposition and constant potential deposition were compared. The numerical model established in this study can be used as a powerful tool to optimize process parameters and design process equipment, and has important physical significance for deepening understanding of uranium electrorefining mechanism.

     

  • loading
  • [1]
    KOYAMA T, IIZUKA M, SHOJI Y, et al. An experimental study of molten salt electrorefining of uranium using solid iron cathode and liquid cadmium cathode for development of pyrometallurgical reprocessing[J]. Journal of Nuclear Science and Technology, 1997, 34(4): 384-393. doi: 10.1080/18811248.1997.9733678
    [2]
    林如山,何辉,唐洪彬,等. 我国乏燃料干法后处理技术研究现状与发展[J]. 原子能科学技术,2020, 54(S1): 115-125.
    [3]
    NEA. Proceedings of the workshop on pyrochemical separations: Avignon, France 14-16 March 2000[M]. Paris: OECD, 2001: 3.
    [4]
    LEE J H, KANG Y H, HWANG S C, et al. Separation characteristics of a spent fuel surrogate in the molten salt electrorefining process[J]. Journal of Materials Processing Technology, 2007, 189(1-3): 268-272. doi: 10.1016/j.jmatprotec.2007.01.034
    [5]
    SOUČEK P, MALMBECK R, MENDES E, et al. Exhaustive electrolysis for recovery of actinides from molten LiCl–KCl using solid aluminium cathodes[J]. Journal of Radioanalytical and Nuclear Chemistry, 2010, 286(3): 823-828. doi: 10.1007/s10967-010-0739-6
    [6]
    LEE J H, KANG Y H, HWANG S C, et al. Application of graphite as a cathode material for electrorefining of uranium[J]. Nuclear Technology, 2008, 162(2): 135-143. doi: 10.13182/NT08-A3940
    [7]
    LAIDLER J J, BATTLES J E, MILLER W E, et al. Development of pyroprocessing technology[J]. Progress in Nuclear Energy, 1997, 31(1-2): 131-140. doi: 10.1016/0149-1970(96)00007-8
    [8]
    KIM G Y, YOON D, PAEK S, et al. A study on the electrochemical deposition behavior of uranium ion in a LiCl–KCl molten salt on solid and liquid electrode[J]. Journal of Electroanalytical Chemistry, 2012, 682: 128-135. doi: 10.1016/j.jelechem.2012.07.025
    [9]
    LEE C H, KIM T J, PARK S, et al. Effect of cathode material on the electrorefining of U in LiCl-KCl molten salts[J]. Journal of Nuclear Materials, 2017, 488: 210-214. doi: 10.1016/j.jnucmat.2017.03.023
    [10]
    LIU K, CHAI Z F, SHI W Q. Uranium dendritic morphology in the electrorefining: influences of temperature and current density[J]. Journal of The Electrochemical Society, 2018, 165(3): D98-D106. doi: 10.1149/2.0281803jes
    [11]
    ZHANG J S. Kinetic model for electrorefining, part I: Model development and validation[J]. Progress in Nuclear Energy, 2014, 70: 279-286. doi: 10.1016/j.pnucene.2013.03.001
    [12]
    KIM S H, PARK S B, LEE S J, et al. Computer-assisted design and experimental validation of multielectrode electrorefiner for spent nuclear fuel treatment using a tertiary model[J]. Nuclear Engineering and Design, 2013, 257: 12-20. doi: 10.1016/j.nucengdes.2013.01.009
    [13]
    CHOI S, PARK J, KIM K R, et al. Three-dimensional multispecies current density simulation of molten-salt electrorefining[J]. Journal of Alloys and Compounds, 2010, 503(1): 177-185. doi: 10.1016/j.jallcom.2010.04.228
    [14]
    KIM K R, CHOI S Y, KIM J G, et al. Multi physics modeling of a molten-salt electrolytic process for nuclear waste treatment[J]. IOP Conference Series: Materials Science and Engineering, 2010, 9: 012002.
    [15]
    张萌,王靖阳,孙兰昕,等. 乏燃料干法后处理中铀电沉积行为模拟研究[J]. 核动力工程,2019, 40(6): 72-76.
    [16]
    LIANG B, LI X S, ZHANG M, et al. A phase-field investigation of factors affecting the morphology of uranium dendrites during electrodeposition[J]. Electrochimica Acta, 2023, 465: 142958. doi: 10.1016/j.electacta.2023.142958
    [17]
    ZHANG M, LIANG B, LUO J H, et al. A finite-element model for underpotential deposition of Ce(III) on an active aluminum electrode in LiCl–KCl melts[J]. Journal of The Electrochemical Society, 2022, 169(4): 042506. doi: 10.1149/1945-7111/ac6221
    [18]
    SALYULEV A, POTAPOV A, KHOKHLOV V, et al. The electrical conductivity of model melts based on LiCl-KCl, used for the processing of spent nuclear fuel[J]. Electrochimica Acta, 2017, 257: 510-515. doi: 10.1016/j.electacta.2017.09.154
    [19]
    LIU K, TAN T, ZHOU X P, et al. The dendrite growth, morphology control and deposition properties of uranium electrorefining[J]. Journal of Nuclear Materials, 2021, 555: 153110. doi: 10.1016/j.jnucmat.2021.153110
    [20]
    LIN C, LIU K, RUAN H H, et al. Mechano-electrochemical phase field modeling for formation and modulation of dendritic Pattern: application to uranium recovery from spent nuclear fuel[J]. Materials & Design, 2022, 213: 110322.
    [21]
    YOON D, PHONGIKAROON S. Measurement and analysis of exchange current density for U/U3+ reaction in LiCl-KCl eutectic salt via various electrochemical techniques[J]. Electrochimica Acta, 2017, 227: 170-179. doi: 10.1016/j.electacta.2017.01.011
    [22]
    MASSET P, BOTTOMLEY D, KONINGS R, et al. Electrochemistry of uranium in molten LiCl-KCl eutectic[J]. Journal of The Electrochemical Society, 2005, 152(6): A1109-A1115. doi: 10.1149/1.1901083
    [23]
    CONOCAR O, DOUYERE N, GLATZ J P, et al. Promising pyrochemical actinide/lanthanide separation processes using aluminum[J]. Nuclear Science and Engineering, 2006, 153(3): 253-261. doi: 10.13182/NSE06-A2611
    [24]
    ZHANG J S. Parametric studies of uranium deposition and dissolution at solid electrodes[J]. Journal of Applied Electrochemistry, 2014, 44(3): 383-390. doi: 10.1007/s10800-013-0650-2
    [25]
    BARD A J, FUALKNER L R. Electrochemical methods fundamentals and applications[M]. America: John Wiley & Sons, Inc. , 2005: 114-116.
    [26]
    MARSHALL S L, REDEY L, VANDEGRIFT G F, et al. Electroformation of uranium hemispherical shells:ANL-89/26; ON: DE90004489[R]. Argonne: Argonne National Lab. (ANL), 1989.
    [27]
    RAPPLEYE D, SIMPSON M F. Application of the rotating cylinder electrode in molten LiCl-KCl eutectic containing uranium(III)- and magnesium(II)-chloride[J]. Journal of Nuclear Materials, 2017, 487: 362-372. doi: 10.1016/j.jnucmat.2017.02.037
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (16) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return