Citation: | Liang Bo, Zhang Meng, Sun Lanxin, Wang Jingyang, Lin Rushan, Han Wei, Jiao Caishan. Simulation Study on Concentration Polarization and Electrode Kinetics during Electrorefining of Uranium[J]. Nuclear Power Engineering, 2024, 45(6): 121-131. doi: 10.13832/j.jnpe.2024.06.0121 |
[1] |
KOYAMA T, IIZUKA M, SHOJI Y, et al. An experimental study of molten salt electrorefining of uranium using solid iron cathode and liquid cadmium cathode for development of pyrometallurgical reprocessing[J]. Journal of Nuclear Science and Technology, 1997, 34(4): 384-393. doi: 10.1080/18811248.1997.9733678
|
[2] |
林如山,何辉,唐洪彬,等. 我国乏燃料干法后处理技术研究现状与发展[J]. 原子能科学技术,2020, 54(S1): 115-125.
|
[3] |
NEA. Proceedings of the workshop on pyrochemical separations: Avignon, France 14-16 March 2000[M]. Paris: OECD, 2001: 3.
|
[4] |
LEE J H, KANG Y H, HWANG S C, et al. Separation characteristics of a spent fuel surrogate in the molten salt electrorefining process[J]. Journal of Materials Processing Technology, 2007, 189(1-3): 268-272. doi: 10.1016/j.jmatprotec.2007.01.034
|
[5] |
SOUČEK P, MALMBECK R, MENDES E, et al. Exhaustive electrolysis for recovery of actinides from molten LiCl–KCl using solid aluminium cathodes[J]. Journal of Radioanalytical and Nuclear Chemistry, 2010, 286(3): 823-828. doi: 10.1007/s10967-010-0739-6
|
[6] |
LEE J H, KANG Y H, HWANG S C, et al. Application of graphite as a cathode material for electrorefining of uranium[J]. Nuclear Technology, 2008, 162(2): 135-143. doi: 10.13182/NT08-A3940
|
[7] |
LAIDLER J J, BATTLES J E, MILLER W E, et al. Development of pyroprocessing technology[J]. Progress in Nuclear Energy, 1997, 31(1-2): 131-140. doi: 10.1016/0149-1970(96)00007-8
|
[8] |
KIM G Y, YOON D, PAEK S, et al. A study on the electrochemical deposition behavior of uranium ion in a LiCl–KCl molten salt on solid and liquid electrode[J]. Journal of Electroanalytical Chemistry, 2012, 682: 128-135. doi: 10.1016/j.jelechem.2012.07.025
|
[9] |
LEE C H, KIM T J, PARK S, et al. Effect of cathode material on the electrorefining of U in LiCl-KCl molten salts[J]. Journal of Nuclear Materials, 2017, 488: 210-214. doi: 10.1016/j.jnucmat.2017.03.023
|
[10] |
LIU K, CHAI Z F, SHI W Q. Uranium dendritic morphology in the electrorefining: influences of temperature and current density[J]. Journal of The Electrochemical Society, 2018, 165(3): D98-D106. doi: 10.1149/2.0281803jes
|
[11] |
ZHANG J S. Kinetic model for electrorefining, part I: Model development and validation[J]. Progress in Nuclear Energy, 2014, 70: 279-286. doi: 10.1016/j.pnucene.2013.03.001
|
[12] |
KIM S H, PARK S B, LEE S J, et al. Computer-assisted design and experimental validation of multielectrode electrorefiner for spent nuclear fuel treatment using a tertiary model[J]. Nuclear Engineering and Design, 2013, 257: 12-20. doi: 10.1016/j.nucengdes.2013.01.009
|
[13] |
CHOI S, PARK J, KIM K R, et al. Three-dimensional multispecies current density simulation of molten-salt electrorefining[J]. Journal of Alloys and Compounds, 2010, 503(1): 177-185. doi: 10.1016/j.jallcom.2010.04.228
|
[14] |
KIM K R, CHOI S Y, KIM J G, et al. Multi physics modeling of a molten-salt electrolytic process for nuclear waste treatment[J]. IOP Conference Series: Materials Science and Engineering, 2010, 9: 012002.
|
[15] |
张萌,王靖阳,孙兰昕,等. 乏燃料干法后处理中铀电沉积行为模拟研究[J]. 核动力工程,2019, 40(6): 72-76.
|
[16] |
LIANG B, LI X S, ZHANG M, et al. A phase-field investigation of factors affecting the morphology of uranium dendrites during electrodeposition[J]. Electrochimica Acta, 2023, 465: 142958. doi: 10.1016/j.electacta.2023.142958
|
[17] |
ZHANG M, LIANG B, LUO J H, et al. A finite-element model for underpotential deposition of Ce(III) on an active aluminum electrode in LiCl–KCl melts[J]. Journal of The Electrochemical Society, 2022, 169(4): 042506. doi: 10.1149/1945-7111/ac6221
|
[18] |
SALYULEV A, POTAPOV A, KHOKHLOV V, et al. The electrical conductivity of model melts based on LiCl-KCl, used for the processing of spent nuclear fuel[J]. Electrochimica Acta, 2017, 257: 510-515. doi: 10.1016/j.electacta.2017.09.154
|
[19] |
LIU K, TAN T, ZHOU X P, et al. The dendrite growth, morphology control and deposition properties of uranium electrorefining[J]. Journal of Nuclear Materials, 2021, 555: 153110. doi: 10.1016/j.jnucmat.2021.153110
|
[20] |
LIN C, LIU K, RUAN H H, et al. Mechano-electrochemical phase field modeling for formation and modulation of dendritic Pattern: application to uranium recovery from spent nuclear fuel[J]. Materials & Design, 2022, 213: 110322.
|
[21] |
YOON D, PHONGIKAROON S. Measurement and analysis of exchange current density for U/U3+ reaction in LiCl-KCl eutectic salt via various electrochemical techniques[J]. Electrochimica Acta, 2017, 227: 170-179. doi: 10.1016/j.electacta.2017.01.011
|
[22] |
MASSET P, BOTTOMLEY D, KONINGS R, et al. Electrochemistry of uranium in molten LiCl-KCl eutectic[J]. Journal of The Electrochemical Society, 2005, 152(6): A1109-A1115. doi: 10.1149/1.1901083
|
[23] |
CONOCAR O, DOUYERE N, GLATZ J P, et al. Promising pyrochemical actinide/lanthanide separation processes using aluminum[J]. Nuclear Science and Engineering, 2006, 153(3): 253-261. doi: 10.13182/NSE06-A2611
|
[24] |
ZHANG J S. Parametric studies of uranium deposition and dissolution at solid electrodes[J]. Journal of Applied Electrochemistry, 2014, 44(3): 383-390. doi: 10.1007/s10800-013-0650-2
|
[25] |
BARD A J, FUALKNER L R. Electrochemical methods fundamentals and applications[M]. America: John Wiley & Sons, Inc. , 2005: 114-116.
|
[26] |
MARSHALL S L, REDEY L, VANDEGRIFT G F, et al. Electroformation of uranium hemispherical shells:ANL-89/26; ON: DE90004489[R]. Argonne: Argonne National Lab. (ANL), 1989.
|
[27] |
RAPPLEYE D, SIMPSON M F. Application of the rotating cylinder electrode in molten LiCl-KCl eutectic containing uranium(III)- and magnesium(II)-chloride[J]. Journal of Nuclear Materials, 2017, 487: 362-372. doi: 10.1016/j.jnucmat.2017.02.037
|