Advance Search
Volume 45 Issue 6
Dec.  2024
Turn off MathJax
Article Contents
Liao Haoyang, Ming Yang, Zhao Fulong, Lu Ruibo, Wei Ruixuan, Gao Puzhen, Tan Sichao, Tian Ruifeng. Safety Characteristics Analysis of Helium-Xenon Cooled Reactor System under LOCA[J]. Nuclear Power Engineering, 2024, 45(6): 197-205. doi: 10.13832/j.jnpe.2024.06.0197
Citation: Liao Haoyang, Ming Yang, Zhao Fulong, Lu Ruibo, Wei Ruixuan, Gao Puzhen, Tan Sichao, Tian Ruifeng. Safety Characteristics Analysis of Helium-Xenon Cooled Reactor System under LOCA[J]. Nuclear Power Engineering, 2024, 45(6): 197-205. doi: 10.13832/j.jnpe.2024.06.0197

Safety Characteristics Analysis of Helium-Xenon Cooled Reactor System under LOCA

doi: 10.13832/j.jnpe.2024.06.0197
  • Received Date: 2023-10-16
  • Rev Recd Date: 2024-02-23
  • Publish Date: 2024-12-17
  • In order to avoid the high risk and harm caused by the loss of coolant accident (LOCA) in the reactor system, the developed LOCA analysis code for helium-xenon cooled reactor system was used to simulate a variety of LOCA transient conditions, and the system transient characteristics, volume filling influence characteristics, load following failure influence characteristics, break location influence characteristics and break size influence characteristics were analyzed. The results show that the system pressure and mass flow rate decrease rapidly after the LOCA. Volume filling can alleviate LOCA, reducing the rate of mass flow rate decline and the rate of reactor outlet temperature rise by 77.15% and 90.27%, respectively. Both the constant load and the break at high pressure have a negative impact on LOCA, resulting in an increase in the rate of mass flow rate decline by 13.85% and 79.83% respectively, and an increase in the rate of reactor outlet temperature rise by 15.84% and 96.06% respectively. The decrease rates of system pressure and mass flow rate rise with the increase of the break size. Especially between 15 mm and 30 mm of the break size, the flow rate decreases and the reactor outlet temperature increases significantly by 258.84% and 595.91%, respectively.

     

  • loading
  • [1]
    YU J C. Accident and safety analysis[M]//YU J C. Marine Nuclear Power Technology. Singapore: Springer, 2020: 341-360.
    [2]
    LI Z G, SUN J, LIU M L, et al. Design of a hundred-kilowatt level integrated gas-cooled space nuclear reactor for deep space application[J]. Nuclear Engineering and Design, 2020, 361: 110569. doi: 10.1016/j.nucengdes.2020.110569
    [3]
    LU D G, DING H, SUI D, et al. Safety analysis of a supercritical carbon dioxide cooled reactor system coupled with Brayton cycle under loss-of-coolant accident[J]. Progress in Nuclear Energy, 2023, 161: 104718. doi: 10.1016/j.pnucene.2023.104718
    [4]
    张元东. 超临界二氧化碳反应堆运行与安全特性研究[D]. 哈尔滨: 哈尔滨工程大学,2021: 125-131.
    [5]
    孟涛. 700 kWe气冷空间反应堆特性分析及系统瞬态特性研究[D]. 哈尔滨: 哈尔滨工程大学,2020: 126-128.
    [6]
    QIN H, ZHANG R, GUO K L, et al. Thermal-hydraulic analysis of an open-grid megawatt gas-cooled space nuclear reactor core[J]. International Journal of Energy Research, 2021, 45(8): 11616-11628. doi: 10.1002/er.5329
    [7]
    EL-GENK M S, TOURNIER J M P, GALLO B M. Dynamic simulation of a space reactor system with closed brayton cycle loops[J]. Journal of Propulsion and Power, 2010, 26(3): 394-406. doi: 10.2514/1.46262
    [8]
    MING Y, LIU K, ZHAO F L, et al. Dynamic modeling and validation of the 5 MW small modular supercritical CO2 brayton-cycle reactor system[J]. Energy Conversion and Management, 2022, 253: 115184. doi: 10.1016/j.enconman.2021.115184
    [9]
    MING Y, TIAN R F, ZHAO F L, et al. Control strategies and transient characteristics of a 5MWth small modular supercritical CO2 Brayton-cycle reactor system[J]. Applied Thermal Engineering, 2023, 235: 121302. doi: 10.1016/j.applthermaleng.2023.121302
    [10]
    明杨,易经纬,方华伟,等. 直接布雷顿循环气冷反应堆系统运行特性分析[J]. 原子能科学技术,2020, 54(7): 1168-1175. doi: 10.7538/yzk.2020.youxian.0013
    [11]
    王庚,孙永伟,邓欣. 高压大容积全缠绕气瓶的Workbench ACP参数化结构分析[J]. 材料开发与应用,2023, 38(3): 73-76.
    [12]
    王庚,孙永伟,邓欣. 高压大容积碳纤维全缠绕气瓶的设计研究[J]. 材料开发与应用,2023, 38(2): 63-66,83.
    [13]
    章静,田文喜,朱大欢,等. 超临界流体的泄压过程研究[J]. 原子能科学技术,2015, 49(3): 440-446. doi: 10.7538/yzk.2015.49.03.0440
    [14]
    WANG X B, ZHAO F L, HE Y H, et al. Development and verification of helium–xenon mixture cooled small reaction system[J]. Progress in Nuclear Energy, 2023, 160: 104679. doi: 10.1016/j.pnucene.2023.104679
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (22) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return