Citation: | Lyu Fangming, Jiang He, Tong He, Cao Guochang, Cao Hongsheng. Research on Environmentally Assisted Fatigue Analysis Method for Primary Circuit of Pressurized Water Reactor Units[J]. Nuclear Power Engineering, 2024, 45(6): 232-236. doi: 10.13832/j.jnpe.2024.06.0232 |
[1] |
韩恩厚. 核电高温高压水中材料腐蚀关键测试技术[J]. 中国材料进展,2020, 39(7-8): 519-526. doi: 10.7502/j.issn.1674-3962.202006029
|
[2] |
张兹瑜,吴欣强,韩恩厚,等. 核电结构材料腐蚀疲劳裂纹扩展行为研究现状与进展[J]. 中国腐蚀与防护学报,2022, 42(1): 9-15.
|
[3] |
贺寅彪,曹明,姚伟达. 关于LWR设备设计中考虑环境对疲劳影响问题的探讨[J]. 核动力工程,2011, 32(S1): 35-39,97.
|
[4] |
WARE A G, MORTON D K, NITZEL M E. Application of NUREG/CR-5999 interim fatigue curves to selected nuclear power plant components: NUREG/CR-6260[R]. Washington: NRC, 1995.
|
[5] |
U. S. Nuclear Regulatory Commission. Generic aging lessons learned (GALL) report: NUREG-1801[R]. Washington: NRC, 2010.
|
[6] |
U. S. Nuclear Regulatory Commission. Generic aging lessons learned for subsequent license renewal (GALL-SLR) report: NUREG-2191[R]. Washington: NRC, 2017.
|
[7] |
U. S. Nuclear Regulatory Commission. Effect of LWR water environments on the fatigue life of reactor materials: NUREG/CR-6909 Rev. 1[R]. Washington: NRC, 2018.
|
[8] |
Electric Power Research Institute. Environmentally assisted fatigue screening methods: EPRI 3002018262[R]. USA,Washington: EPRI, 2020.
|
[9] |
U. S. Nuclear Regulatory Commission. Effects of LWR coolant environments on fatigue design curves of carbon and low-alloy steels: NUREG/CR-6583[R]. Washington: NRC, 1998.
|
[10] |
U. S. Nuclear Regulatory Commission. Effects of LWR coolant environments on fatigue design curves of austenitic stainless steels: NUREG/CR-5704[R]. Washington: NRC, 1999.
|