Citation: | Gao Yang, Guo Xianglong, Jiang Yufan, Wu Jianwen, Tang Rui, Huang Yanping, Zhang Lefu. Study on Corrosion Behavior of High-corrosion Resistance AFAs in Supercritical Water[J]. Nuclear Power Engineering, 2024, 45(6): 271-279. doi: 10.13832/j.jnpe.2024.06.0271 |
[1] |
YAMAMOTO Y, BRADY M P, LU Z P, et al. Creep-resistant, Al2O3-forming austenitic stainless steels[J]. Science, 2007, 316(5823): 433-436. doi: 10.1126/science.1137711
|
[2] |
周禹,张宏亮,李满昌,等. 超临界水冷堆堆内构件选材研究[J]. 核动力工程,2013, 34(1): 60-64. doi: 10.3969/j.issn.0258-0926.2013.01.013
|
[3] |
GUO X L, CHEN K, GAO W H, et al. Corrosion behavior of alumina-forming and oxide dispersion strengthened austenitic 316 stainless steel in supercritical water[J]. Corrosion Science, 2018, 138: 297-306. doi: 10.1016/j.corsci.2018.04.026
|
[4] |
HEUER A H, HOVIS D B, SMIALEK J L, et al. Alumina scale formation: a new perspective[J]. Journal of the American Ceramic Society, 2011, 94(S1): s146-s153.
|
[5] |
APHALE A N, HU B X, REISERT M, et al. Oxidation behavior and chromium evaporation from Fe and Ni base alloys under SOFC systems operation conditions[J]. JOM, 2019, 71(1): 116-123. doi: 10.1007/s11837-018-3188-2
|
[6] |
YAMAMOTO Y, BRADY M P, MURALIDHARAN G, et al. Development of creep-resistant, alumina-forming ferrous alloys for high-temperature structural use[C]//ASME 2018 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries. Seattle: ASME, 2018.
|
[7] |
NIU Y, WANG S, GAO F, et al. The nature of the third-element effect in the oxidation of Fe–xCr–3at.% Al alloys in 1atm O2 at 1000℃[J]. Corrosion Science, 2008, 50(2): 345-356. doi: 10.1016/j.corsci.2007.06.019
|
[8] |
XU X Q, ZHANG X F, SUN X Y, et al. Effects of silicon additions on the oxide scale formation of an alumina-forming austenitic alloy[J]. Corrosion Science, 2012, 65: 317-321. doi: 10.1016/j.corsci.2012.08.039
|
[9] |
SHEN L, WU B J, ZHAO K, et al. Reason for negative effect of Nb addition on oxidation resistance of alumina-forming austenitic stainless steel at 1323 K[J]. Corrosion Science, 2021, 191: 109754. doi: 10.1016/j.corsci.2021.109754
|
[10] |
WEN D H, LI Z, JIANG B B, et al. Effects of Nb/Ti/V/Ta on phase precipitation and oxidation resistance at 1073 K in alumina-forming austenitic stainless steels[J]. Materials Characterization, 2018, 144: 86-98. doi: 10.1016/j.matchar.2018.07.007
|
[11] |
GAO Y, SUN D Y, LIU Z, et al. Oxide scale growth behavior of alumina-forming austenitic stainless steel exposed to supercritical water[J]. Corrosion Science, 2024, 227: 111681. doi: 10.1016/j.corsci.2023.111681
|
[12] |
TAN L, ALLEN T R, YANG Y. Corrosion behavior of alloy 800H (Fe–21Cr–32Ni) in supercritical water[J]. Corrosion Science, 2011, 53(2): 703-711. doi: 10.1016/j.corsci.2010.10.021
|
[13] |
SHEN Z, CHEN K, GUO X L, et al. A study on the corrosion and stress corrosion cracking susceptibility of 310-ODS steel in supercritical water[J]. Journal of Nuclear Materials, 2019, 514: 56-65. doi: 10.1016/j.jnucmat.2018.11.016
|
[14] |
GUO S W, XU D H, LI Y H, et al. Corrosion characteristics and mechanisms of typical Ni-based corrosion-resistant alloys in sub- and supercritical water[J]. The Journal of Supercritical Fluids, 2021, 170: 105138. doi: 10.1016/j.supflu.2020.105138
|
[15] |
YOUNG D J. High temperature oxidation and corrosion of metals[M]. Amsterdam: Elsevier, 2008, 24-29.
|
[16] |
SAUNDERS S R J, MONTEIRO M, RIZZO F. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: a review[J]. Progress in Materials Science, 2008, 53(5): 775-837. doi: 10.1016/j.pmatsci.2007.11.001
|
[17] |
GAO Y, SU R R, LIU Z, et al. High-resolution characterization reveals the role of Al content in the evolution of oxide scales formed on alumina-forming alloy exposed to supercritical water[J]. Corrosion Science, 2024, 231: 111968. doi: 10.1016/j.corsci.2024.111968
|
[18] |
BRUMM M W, GRABKE H J. The oxidation behaviour of NiAl-I. Phase transformations in the alumina scale during oxidation of NiAl and NiAl-Cr alloy[J]. Corrosion Science, 1992, 33(11): 1677-1690. doi: 10.1016/0010-938X(92)90002-K
|
[19] |
DEODESHMUKH V P, MATTHEWS S J, KLARSTROM D L. High-temperature oxidation performance of a new alumina-forming Ni–Fe–Cr–Al alloy in flowing air[J]. International Journal of Hydrogen Energy, 2011, 36(7): 4580-4587. doi: 10.1016/j.ijhydene.2010.04.099
|
[20] |
DU D H, CHEN K, ZHANG L F, et al. Microstructural investigation of the nodular corrosion of 304NG stainless steel in supercritical water[J]. Corrosion Science, 2020, 170: 108652. doi: 10.1016/j.corsci.2020.108652
|