Advance Search
Volume 46 Issue 3
Jun.  2025
Turn off MathJax
Article Contents
Ke Lishi, Du Haihu, Yang Xiaohu, Zhang Sheng, Huang Lijun. General Health Assessment Method for Critical Nuclear Power Plant Equipment Based on Time-Series Characteristics of State Parameters[J]. Nuclear Power Engineering, 2025, 46(3): 229-235. doi: 10.13832/j.jnpe.2024.060009
Citation: Ke Lishi, Du Haihu, Yang Xiaohu, Zhang Sheng, Huang Lijun. General Health Assessment Method for Critical Nuclear Power Plant Equipment Based on Time-Series Characteristics of State Parameters[J]. Nuclear Power Engineering, 2025, 46(3): 229-235. doi: 10.13832/j.jnpe.2024.060009

General Health Assessment Method for Critical Nuclear Power Plant Equipment Based on Time-Series Characteristics of State Parameters

doi: 10.13832/j.jnpe.2024.060009
  • Received Date: 2024-05-29
  • Rev Recd Date: 2024-09-13
  • Available Online: 2025-06-09
  • Publish Date: 2025-06-09
  • To address the issues of low accuracy and poor generalizability in existing health assessment methods for nuclear power equipment, this study establishes a generalized health assessment method for important equipment in nuclear power plant based on time-series characteristics of state parameters. By analyzing the time-series characteristics of state parameters, this method constructs an evaluation index matrix and an assessment model, and forms a general method suitable for various types of equipment in nuclear power plants. Taking circulating water pumps of different manufacturers and models as examples, the proposed method achieves over 93% accuracy in health assessment and significantly advances anomaly detection timelines. These results demonstrate that the general health condition assessment method established in this study can improve the accuracy of health status assessment of nuclear power plant equipment and is suitable for various types of equipment in nuclear power plants.

     

  • loading
  • [1]
    张红飞,夏霜,程志友,等. 基于改进马氏距离的空压机健康状态评估[J]. 电测与仪表,2018, 55(17): 32-36,93. doi: 10.3969/j.issn.1001-1390.2018.17.006
    [2]
    周裕华. 滚动轴承的性能退化评估与剩余使用寿命预测方法的研究[D]. 广州: 华南理工大学,2018.
    [3]
    李康,赵乾宏,林习良,等. 一种利用多种特征信息的旋转机械设备状态评估方法[J]. 科学技术与工程,2014, 14(21): 280-284. doi: 10.3969/j.issn.1671-1815.2014.21.053
    [4]
    COBLE J B, RAMUHALLI P, BOND L J, et al. Prognostics and health management in nuclear power plants: a review of technologies and applications: PNNL-21515[R]. Richland: Pacific Northwest National Laboratory (PNNL), 2012.
    [5]
    CARNEIRO A L G, PORTO JR A C S. Development of an integrated condition monitoring and diagnostic system for process control valves used in nuclear power plant[M]. Italy: Chemical Engineering Transactions (CET), 2013: 871-876.
    [6]
    PENG Y, ZHANG Y J, LIU D T, et al. Degradation estimation using feature increment stepwise linear regression for PWM inverter of electro-mechanical actuator[J]. Microelectronics Reliability, 2018, 88-90: 514-518. doi: 10.1016/j.microrel.2018.06.025
    [7]
    COBLE J, RAMUHALLI P, BOND L J, et al. A review of prognostics and health management applications in nuclear power plants[J]. International Journal of Prognostics and Health Management, 2015, 6: 1-22.
    [8]
    刘永阔. 核动力装置故障诊断智能技术的研究[D]. 哈尔滨: 哈尔滨工程大学,2006.
    [9]
    赵明乾. 基于大数据的电力设备故障分析与诊断的研究[D]. 北京: 华北电力大学,2018.
    [10]
    WIDODO A, YANG B S. Support vector machine in machine condition monitoring and fault diagnosis[J]. Mechanical Systems and Signal Processing, 2007, 21(6): 2560-2574. doi: 10.1016/j.ymssp.2006.12.007
    [11]
    LIU J, SERAOUI R, VITELLI V, et al. Nuclear power plant components condition monitoring by probabilistic support vector machine[J]. Annals of Nuclear Energy, 2013, 56: 23-33. doi: 10.1016/j.anucene.2013.01.005
    [12]
    BARALDI P, DI MAIO F, ZIO E. Unsupervised clustering for fault diagnosis in nuclear power plant components[J]. International Journal of Computational Intelligence Systems, 2013, 6(4): 764-777. doi: 10.1080/18756891.2013.804145
    [13]
    袁野. 基于多源信息融合的设备关键部件状态评估研究[D]. 重庆: 重庆大学,2018.
    [14]
    李志远. 多传感器信息融合深度森林的柱塞泵健康评估方法研究[D]. 上海: 上海交通大学,2020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (11) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return