Citation: | Tang Simiao, Lian Qiang, Zhu Longxiang, Zhang Luteng, Ma Zaiyong. Research on Thermoelectric Coupling Characteristics of a 100 kW Silent Heat Pipe Cooled Reactor Based on Finite Element Method[J]. Nuclear Power Engineering, 2025, 46(3): 68-77. doi: 10.13832/j.jnpe.2024.060015 |
[1] |
GUO K L, ZHANG Y, LIN X Y, et al. Transient thermoelectric characteristics of the principle prototype for the heat pipe cooled nuclear Silent themoelectirc reactor (NUSTER)[J]. Annals of Nuclear Energy, 2023, 189: 109818. doi: 10.1016/j.anucene.2023.109818
|
[2] |
SUN H, MA P, LIU X, et al. Conceptual design and analysis of a multipurpose micro nuclear reactor power source[J]. Annals of Nuclear Energy, 2018, 121: 118-127. doi: 10.1016/j.anucene.2018.07.025
|
[3] |
TANG S M, LIU X, WANG C L, et al. Thermal-electrical coupling characteristic analysis of the heat pipe cooled reactor with static thermoelectric conversion[J]. Annals of Nuclear Energy, 2022, 168: 108870. doi: 10.1016/j.anucene.2021.108870
|
[4] |
TANG S M, WANG C L, ZHANG D L, et al. Thermoelectric performance study on a heat pipe thermoelectric generator for micro nuclear reactor application[J]. International Journal of Energy Research, 2021, 45(8): 12301-12316. doi: 10.1002/er.6450
|
[5] |
PETERSON P F. Multiple-reheat Brayton cycles for nuclear power conversion with molten coolants[J]. Nuclear Technology, 2003, 144(3): 279-288. doi: 10.13182/NT144-279
|
[6] |
DAI Z W, WANG C L, ZHANG D L, et al. Design and analysis of a free-piston stirling engine for space nuclear power reactor[J]. Nuclear Engineering and Technology, 2021, 53(2): 637-646. doi: 10.1016/j.net.2020.07.011
|
[7] |
WANG C L, ZHANG R, GUO K L, et al. Dynamic simulation of a space gas-cooled reactor power system with a closed Brayton cycle[J]. Frontiers in Energy, 2021, 15(4): 916-929. doi: 10.1007/s11708-021-0757-9
|
[8] |
ZHANG R, GUO K L, WANG C L, et al. Thermal-hydraulic analysis of gas-cooled space nuclear reactor power system with closed Brayton cycle[J]. International Journal of Energy Research, 2021, 45(8): 11851-11867. doi: 10.1002/er.5813
|
[9] |
MCCLURE P R, POSTON D I, GIBSON M A, et al. Kilopower project: the KRUSTY fission power experiment and potential missions[J]. Nuclear Technology, 2020, 206(S1): S1-S12.
|
[10] |
余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019, 40(4): 1-8.
|
[11] |
WANG C L, SUN H, TANG S M, et al. Thermal-hydraulic analysis of a new conceptual heat pipe cooled small nuclear reactor system[J]. Nuclear Engineering and Technology, 2020, 52(1): 19-26.
|
[12] |
ZHANG W W, ZHANG D L, WANG C L, et al. Conceptual design and analysis of a megawatt power level heat pipe cooled space reactor power system[J]. Annals of Nuclear Energy, 2020, 144: 107576. doi: 10.1016/j.anucene.2020.107576
|
[13] |
LIU X, ZHANG R, LIANG Y, et al. Core thermal-hydraulic evaluation of a heat pipe cooled nuclear reactor[J]. Annals of Nuclear Energy, 2020, 142: 107412. doi: 10.1016/j.anucene.2020.107412
|
[14] |
ZHANG Z Q, CHAI X M, WANG C L, et al. Numerical investigation on startup characteristics of high temperature heat pipe for nuclear reactor[J]. Nuclear Engineering and Design, 2021, 378: 111180. doi: 10.1016/j.nucengdes.2021.111180
|
[15] |
MA Y G, LIU J S, YU H X, et al. Coupled irradiation-thermal-mechanical analysis of the solid-state core in a heat pipe cooled reactor[J]. Nuclear Engineering and Technology, 2022, 54(6): 2094-2106. doi: 10.1016/j.net.2022.01.002
|
[16] |
TANG S M, LIAN Q, ZHU L X, et al. Thermal-electrical coupling analysis of the static heat pipe cooled reactor under heat pipe failure condition[J]. Nuclear Engineering and Design, 2024, 417: 112812. doi: 10.1016/j.nucengdes.2023.112812
|
[17] |
ZHANG Y, GUO K L, WANG C L, et al. Numerical analysis of segmented thermoelectric generators applied in the heat pipe cooled nuclear reactor[J]. Applied Thermal Engineering, 2022, 204: 117949. doi: 10.1016/j.applthermaleng.2021.117949
|
[18] |
HUANG J L, WANG C L, TIAN Z X, et al. Preliminary conceptual design and analysis of a 100 kWe level Nuclear Silent Thermal-Electrical Reactor (NUSTER-100)[J]. International Journal of Energy Research, 2022, 46(14): 19653-19666. doi: 10.1002/er.8542
|