Advance Search
Volume 46 Issue 3
Jun.  2025
Turn off MathJax
Article Contents
Liao Ruian, Wang Xuesong, Qi Lin, Zhang Dalin, Tian Wenxi, Su Guanghui, Qiu Suizheng. Steady State Thermal Surrogate Model of TOPAZ-II Reactor Core[J]. Nuclear Power Engineering, 2025, 46(3): 24-33. doi: 10.13832/j.jnpe.2024.070011
Citation: Liao Ruian, Wang Xuesong, Qi Lin, Zhang Dalin, Tian Wenxi, Su Guanghui, Qiu Suizheng. Steady State Thermal Surrogate Model of TOPAZ-II Reactor Core[J]. Nuclear Power Engineering, 2025, 46(3): 24-33. doi: 10.13832/j.jnpe.2024.070011

Steady State Thermal Surrogate Model of TOPAZ-II Reactor Core

doi: 10.13832/j.jnpe.2024.070011
  • Received Date: 2024-06-20
  • Rev Recd Date: 2024-10-01
  • Available Online: 2025-06-09
  • Publish Date: 2025-06-09
  • The TOPAZ-Ⅱ reactor, a space nuclear reactor power designed by the former Soviet Union, uses sodium-potassium alloy (NaK-78) as coolant and adopts thermionic conversion power generation principle to provide power for the load. To quickly and accurately calculate the steady state thermal parameters of the core, a steady state high-precision thermal surrogate model of the core was established. This study firstly used Fluent to carry out thermal calculation of core steady state, with grid node temperatures along the central longitudinal cross-section selected as sample data. Then the main features in samples were extracted by Proper Orthogonal Decomposition (POD) method, and the top 10 modes were retained based on 99.999% energy proportion for model order reduction. Finally, through Back Propagation (BP) neural network, the steady state thermal surrogate model of core was established and was compared and validated with Fluent. The results show that the maximum error of the surrogate model in calculating the temperature at grid nodes is 9.95 K, the relative error is less than 1% and the calculation time is less than 1 s. Taking the outlet temperature of the hottest coolant channel as a reference, the flow-power percentage ratio of the coolant to maintain the single-phase working state should be greater than 0.35 calculated by the thermal surrogate model. Therefore, the thermal surrogate model established in this paper can quickly and accurately calculate the steady state thermal parameters of the core, achieve simulation prediction of the core, and provide certain reference for the thermal safety analysis of the core.

     

  • loading
  • [1]
    苏著亭,杨继材,柯国土. 空间核动力[M]. 上海: 上海交通大学出版社,2016: 378-382.
    [2]
    VOSS S S, RODRIGUEZ E A. Russian TOPAZ II system test program (1970-1989)[J]. AIP Conference Proceedings, 1994, 301(1): 803-812.
    [3]
    SCHMIDT G L, OGLOBLIN B, SINKEVICH V, et al. TOPAZ II non-nuclear qualification test program[J]. AIP Conference Proceedings, 1994, 301(1): 1185-1191.
    [4]
    WOLD S K, IZHVANOV O L, VIBIVANETS V I, et al. TOPAZ-II thermionic fuel element testing[J]. AIP Conference Proceedings, 1994, 301(1): 1025-1030.
    [5]
    BENKE S M, VENABLE J R. Operational testing and thermal modeling of a TOPAZ-II single-cell thermionic fuel element test stand[J]. AIP Conference Proceedings, 1995, 324(1): 495-501.
    [6]
    PARAMONOV D V, EL-GENK M S. A review of cesium thermionic converters with developed emitter surfaces[J]. Energy Conversion and Management, 1997, 38(6): 533-549.
    [7]
    EL-GENK M S, XUE H M. Transient and steady-state analyses of an electrically heated Topaz-II thermionic fuel element[C]//Proceedings of the 27th Intersociety Energy Conversion Engineering Conference. San Diego: SAE, 1992.
    [8]
    PARAMONOV D V, EL-GENK M S. Development and comparison of a TOPAZ-II system model with experimental data[J]. Nuclear Technology, 1994, 108(2): 157-170.
    [9]
    邹佳讯,郭春秋,赵守智. TOPAZ-Ⅱ型反应堆堆芯热工水力数值模拟[J]. 原子能科学技术,2014, 48(S): 302-307.
    [10]
    邹佳讯,郭春秋,孙征. TOPAZ Ⅱ反应堆本体流固共轭传热数值模拟[J]. 核科学与工程,2020, 40(6): 1104-1112.
    [11]
    DAI Z W, WANG C L, ZHANG D L, et al. Numerical simulation on thermal-hydraulic and thermoelectric characteristics of the TOPAZ-II reactor core[J]. International Journal of Energy Research, 2021, 45(8): 12159-12172.
    [12]
    MAK S, SUNG C L, WANG X J, et al. An efficient surrogate model for emulation and physics extraction of large eddy simulations[J]. Journal of the American Statistical Association, 2018, 113(524): 1443-1456.
    [13]
    耿俊杰,王兴建,李嘉璐,等. 燃烧室流动混合过程的代理模型[J]. 清华大学学报(自然科学版),2023, 63(4): 633-641.
    [14]
    张文文,陈静,王成龙,等. 热管改进型热离子反应堆瞬态分析程序开发[J]. 原子能科学技术,2015, 49(S1): 227-233.
    [15]
    张彬航,毕彦钊,龚瀚源,等. 基于本征正交分解降阶的燃耗计算方法研究[J]. 原子能科学技术,2023, 57(10): 1938-1948. doi: 10.7538/yzk.2022.youxian.0904
    [16]
    陈晨铭,郭雪岩,常林森. 基于BP神经网络代理模型的翼型优化及领域自适应研究[J]. 动力工程学报,2022, 42(7): 657-663.
    [17]
    周志华. 机器学习[M]. 北京: 清华大学出版社,2016: 106-107.
    [18]
    刘浩洋,户将,李勇锋,等. 最优化: 建模、算法与理论[M]. 北京: 高等教育出版社,2020: 285-286.
    [19]
    蒲春,孙政顺,赵世敏. Matlab神经网络工具箱BP算法比较[J]. 计算机仿真,2006, 23(5): 142-144. doi: 10.3969/j.issn.1006-9348.2006.05.041
    [20]
    王嵘冰,徐红艳,李波,等. BP神经网络隐含层节点数确定方法研究[J]. 计算机技术与发展,2018, 28(4): 31-35. doi: 10.3969/j.issn.1673-629X.2018.04.007
    [21]
    沈花玉,王兆霞,高成耀,等. BP神经网络隐含层单元数的确定[J]. 天津理工大学学报,2008, 24(5): 13-15. doi: 10.3969/j.issn.1673-095X.2008.05.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(3)

    Article Metrics

    Article views (14) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return