Citation: | Lei Meng, Li Dong, Zhang Ziyue, Hao Rao. Study on Quantification of Parameter Uncertainty in Reflooding Model Based on Random Forest Algorithm[J]. Nuclear Power Engineering, 2025, 46(2): 98-106. doi: 10.13832/j.jnpe.2024.070031 |
[1] |
李冬. 最佳估算模型的不确定性量化方法研究及再淹没模型评估的应用[D]. 上海: 上海交通大学,2017.
|
[2] |
WU X, XIE Z Y, ALSAFADI F, et al. A comprehensive survey of inverse uncertainty quantification of physical model parameters in nuclear system thermal-hydraulics codes[J]. Nuclear Engineering and Design, 2021, 384: 111460. doi: 10.1016/j.nucengdes.2021.111460
|
[3] |
KOVTONYUK A. Development of methodology for evaluation of uncertainties of system thermal-hydraulic codes’ input parameters[D]. Pisa: Università di Pisa, 2014.
|
[4] |
SKOREK T. Input uncertainties in uncertainty analyses of system codes: quantification of physical model uncertainties on the basis of CET (combined effect tests)[J]. Nuclear Engineering and Design, 2017, 321: 301-317. doi: 10.1016/j.nucengdes.2016.10.028
|
[5] |
DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39(1): 1-22. doi: 10.1111/j.2517-6161.1977.tb01600.x
|
[6] |
GELMAN A, CARLIN J B, STERN H S, et al. Bayesian data analysis[M]. New York: Chapman and Hall/CRC, 2013: 1-675.
|
[7] |
DAMBLIN G, GAILLARD P. A Bayesian framework for quantifying the uncertainty of physical models integrated into thermal-hydraulic computer codes[C]//Proceedings of the Best Estimate Plus Uncertainty International Conference. Lucca: BEUP, 2018.
|
[8] |
DAMBLIN G, GAILLARD P. Bayesian inference and non-linear extensions of the CIRCE method for quantifying the uncertainty of closure relationships integrated into thermal-hydraulic system codes[J]. Nuclear Engineering and Design, 2020, 359: 110391. doi: 10.1016/j.nucengdes.2019.110391
|
[9] |
WU X, KOZLOWSKI T, MEIDANI H, et al. Inverse uncertainty quantification using the modular Bayesian approach based on Gaussian Process, part 2: application to TRACE[J]. Nuclear Engineering and Design, 2018, 335: 417-431. doi: 10.1016/j.nucengdes.2018.06.003
|
[10] |
WANG C, WU X, KOZLOWSKI T. Surrogate-based Bayesian calibration of thermal-hydraulics models based on PSBT time-dependent benchmark data[C]//Proceedings of the ANS Best Estimate Plus Uncertainty International Conference. Lucca, Italy: BEPU, 2018.
|
[11] |
WANG C, WU X, KOZLOWSKI T. Gaussian process–based inverse uncertainty quantification for trace physical model parameters using steady-state PSBT benchmark[J]. Nuclear Science and Engineering, 2019, 193(1-2): 100-114. doi: 10.1080/00295639.2018.1499279
|
[12] |
WANG C, WU X, KOZLOWSKI T. Inverse uncertainty quantification by hierarchical Bayesian inference for trace physical model parameters based on BFBT benchmark[C]//American Nuclear Society. Proceedings of NURETH-2019. Portland, Oregon, USA: American Nuclear Society, 2019.
|
[13] |
DOMITR P, WŁOSTOWSKI M. The use of machine learning for inverse uncertainty quantification in TRACE code based on Marviken experiment[J]. Nuclear Engineering and Design, 2021, 384: 111498. doi: 10.1016/j.nucengdes.2021.111498
|
[14] |
DOMITR P, WŁOSTOWSKI M, LASKOWSKI R, et al. Comparison of inverse uncertainty quantification methods for critical flow test[J]. Energy, 2023, 263: 125640. doi: 10.1016/j.energy.2022.125640
|
[15] |
邵旻晖. 决策树典型算法研究综述[J]. 电脑知识与技术,2018, 14(8): 175-177.
|
[16] |
曹正凤. 随机森林算法优化研究[D]. 北京: 首都经济贸易大学,2014.
|
[17] |
WANG N, LI D, PENG C, et al. INVESTIGATION OF SURROGATE MODEL FOR UNCERTAINTY QUANTIFICATION OF NUCLEAR SYSTEM[C]//The Proceedings of the International Conference on Nuclear Engineering (ICONE) 2023.30. The Japan Society of Mechanical Engineers, 2023: 1085.
|
[18] |
李冬,王念峰.基于再淹没现象的RBF神经网络和Kriging的代理模型应用及误差分析[J].上海电力大学学报,2022, 38(03): 269-273.
李冬, 王念峰.基于再淹没现象的RBF神经网络和Kriging的代理模型应用及误差分析[J].上海电力大学学报, 2022, 38(03): 269-273.
|
[19] |
IAEA. Status of small reactor designs without on-site refuelling: IAEA-TECDOC-CD-1536[R]. Vienna: International Atomic Energy Agency, 2007.
|
[20] |
MEHOLIC M J. The development of a non-equilibrium dispersed flow film boiling heat transfer modeling package[D]. State College: The Pennsylvania State University, 2011.
|
[21] |
BERAR O A, PROŠEK A, MAVKO B. RELAP5 and TRACE assessment of the Achilles natural reflood experiment[J]. Nuclear Engineering and Design, 2013, 261(8): 306-316.
|
[22] |
IHLE P, RUST K. FEBA-flooding experiments with blocked arrays: evaluation report[M]. Karlsruhe: Kernforschungszentrum Karlsruhe, 1984: 1-543.
|
[23] |
WILKS S S. Determination of sample sizes for setting tolerance limits[J]. The Annals of Mathematical Statistics, 1941, 12(1): 91-96. doi: 10.1214/aoms/1177731788
|