Advance Search
Volume 46 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
Zhang He, Liang Biao, Wang Bo, Tan Sichao, Han Rui, Li Jiangkuan, Tian Ruifeng. Research on Rapid Reconstruction Technology of Temperature Field in Heat Transfer Tube of Steam Generator Based on POD and Neural Network[J]. Nuclear Power Engineering, 2025, 46(2): 90-97. doi: 10.13832/j.jnpe.2024.070047
Citation: Zhang He, Liang Biao, Wang Bo, Tan Sichao, Han Rui, Li Jiangkuan, Tian Ruifeng. Research on Rapid Reconstruction Technology of Temperature Field in Heat Transfer Tube of Steam Generator Based on POD and Neural Network[J]. Nuclear Power Engineering, 2025, 46(2): 90-97. doi: 10.13832/j.jnpe.2024.070047

Research on Rapid Reconstruction Technology of Temperature Field in Heat Transfer Tube of Steam Generator Based on POD and Neural Network

doi: 10.13832/j.jnpe.2024.070047
  • Received Date: 2024-07-17
  • Rev Recd Date: 2024-07-29
  • Available Online: 2025-01-23
  • Publish Date: 2025-04-02
  • The secondary flow region of a casing once-through steam generator involves complex two-phase flow. Although numerical simulation methods can achieve precise simulation calculations, they are slow and time-consuming for multi-condition and transient calculations, and consume significant computational resources. Model reduction is a method that transforms a complex system into an approximately simplified system, enabling rapid calculations while retaining the main characteristics of the original system. This study employs the Proper Orthogonal Decomposition (POD) method to reduce the model of the temperature field inside the heat exchange tubes, capturing the modal coefficients by projecting the original complex system onto a limited number of modes. A neural network method is applied to capture the distribution patterns of short- and long-term time series modal coefficients. The research results indicate that the error in predicting the reconstructed temperature field is within 15%, and the prediction speed is improved by four orders of magnitude compared to numerical simulation methods. Therefore, the prediction method established in this study, which couples model order reduction with neural networks, can be utilized for the rapid prediction of the temperature field within the casing, providing support for internal thermal-hydraulic analysis.

     

  • loading
  • [1]
    谭思超,李桐,刘永超,等. 关于人工智能在核能领域应用的若干思考[J]. 核动力工程,2023, 44(2): 1-8.
    [2]
    路宽,张亦弛,靳玉林,等. 本征正交分解在数据处理中的应用及展望[J]. 动力学与控制学报,2022, 20(5): 20-33.
    [3]
    丁鹏,陶文铨. 一种预测流动和传热问题的快速算法[J]. 西安交通大学学报,2007, 41(3): 271-273. doi: 10.3321/j.issn:0253-987X.2007.03.002
    [4]
    胡和敏,卜永东,张凯,等. 直接空冷凝汽器流动和传热的降维分析[J]. 现代电力,2013, 30(2): 31-36. doi: 10.3969/j.issn.1007-2322.2013.02.007
    [5]
    杨涛,赵鹏程,赵亚楠,等. 基于CFD的铅铋快堆上腔室降阶热分层模型开发[J]. 核动力工程,2023, 44(2): 48-53.
    [6]
    WANG B, CHEN B W, WANG G Q, et al. Back propagation (BP) neural network prediction and chaotic characteristics analysis of free falling liquid film fluctuation on corrugated plate wall[J]. Annals of Nuclear Energy, 2020, 148: 107711. doi: 10.1016/j.anucene.2020.107711
    [7]
    杨迪,段承杰,丁鹏,等. 参数化流动传热问题的模型降阶方法研究[J]. 原子能科学技术,2024, 58(7): 1440-1451.
    [8]
    LIU G, HU W J, HAO S Y, et al. A fast computational method for internal temperature field in Oil-Immersed power transformers[J]. Applied Thermal Engineering, 2024, 236: 121558. doi: 10.1016/j.applthermaleng.2023.121558
    [9]
    PENG X J, CHEN Z D, ZHANG A M, et al. Digital twin temperature field prediction of laser powder bed fusion through proper orthogonal decomposition with radial basis function[J]. Materials Today Communications, 2024, 38: 107883. doi: 10.1016/j.mtcomm.2023.107883
    [10]
    XU W L, ZHONG W Q, ZHOU G W, et al. Optimization of air distribution and coal blending in pulverized coal boilers for high-temperature corrosion prevention based on POD reduced-order modeling[J]. Applied Thermal Engineering, 2024, 255: 123705. doi: 10.1016/j.applthermaleng.2024.123705
    [11]
    ZHAO X Y, CHEN X Q, GONG Z Q, et al. A hybrid method based on proper orthogonal decomposition and deep neural networks for flow and heat field reconstruction[J]. Expert Systems with Applications, 2024, 247: 123137. doi: 10.1016/j.eswa.2024.123137
    [12]
    ZHU W X, WU Y L, CAO Z F, et al. Real-time reconstruction of 3D transient non-uniform temperature field for thermal protection system based on machine learning[J]. Aerospace Science and Technology, 2024, 151: 109241. doi: 10.1016/j.ast.2024.109241
    [13]
    闵光云,姜乃斌. POD和DMD方法对燃料棒流致振动特性的分析[J]. 原子能科学技术,2024, 58(10): 2162-2172.
    [14]
    LEA C, FLYNN M D, VIDAL R, et al. Temporal convolutional networks for action segmentation and detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 1003-1012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(2)

    Article Metrics

    Article views (99) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return