Citation: | Yao Yuantao, Zhe Na, Yong Nuo, Xia Dongqin, Ge Daochuan, Yu Jie. Intelligent Diagnosis and Monitoring for Abnormal Operation Event of Reactor Coolant System[J]. Nuclear Power Engineering. doi: 10.13832/j.jnpe.2024.080023 |
[1] |
刘才学,罗能,何攀,等. 反应堆关键设备健康监测与故障诊断技术研究进展[J]. 核动力工程,2023, 44(3): 8-20.
|
[2] |
张恒,吕雪,刘东,等. 核电人工智能应用: 现状、挑战和机遇[J]. 核动力工程,2023, 44(1): 1-8.
|
[3] |
朱少民,夏虹,彭彬森,等. 基于PCA的主泵传感器状态监测模型[J]. 核动力工程,2020, 41(3): 170-176.
|
[4] |
YAO Y T, WANG J, XIE M, et al. A new approach for fault diagnosis with full-scope simulator based on state information imaging in nuclear power plant[J]. Annals of Nuclear Energy, 2020, 141: 107274. doi: 10.1016/j.anucene.2019.107274
|
[5] |
YU Y, PENG M J, WANG H, et al. Improved PCA model for multiple fault detection, isolation and reconstruction of sensors in nuclear power plant[J]. Annals of Nuclear Energy, 2020, 148: 107662. doi: 10.1016/j.anucene.2020.107662
|
[6] |
曹桦松,孙培伟. 基于PCA-RBF神经网络的小型压水堆故障诊断方法研究[J]. 仪器仪表用户,2021, 28(1): 49-55.
|
[7] |
LEE G, LEE S J, LEE C. A convolutional neural network model for abnormality diagnosis in a nuclear power plant[J]. Applied Soft Computing, 2021, 99: 106874. doi: 10.1016/j.asoc.2020.106874
|
[8] |
邓强,王航,彭敏俊,等. 基于时间卷积胶囊网络的核动力装置事故诊断技术研究[J]. 原子能科学技术,2023, 57(2): 302-312. doi: 10.7538/yzk.2022.youxian.0218
|
[9] |
NGUYEN H P, LIU J, ZIO E. A long-term prediction approach based on long short-term memory neural networks with automatic parameter optimization by Tree-structured Parzen Estimator and applied to time-series data of NPP steam generators[J]. Applied Soft Computing, 2020, 89: 106116. doi: 10.1016/j.asoc.2020.106116
|
[10] |
孙原理,宋志浩. 基于卷积长短期记忆网络和人工鲸鱼算法的核反应堆运行事件诊断方法研究[J]. 核动力工程,2022, 43(4): 185-190.
|
[11] |
WILSON A G, IZMAILOV P. Bayesian deep learning and a probabilistic perspective of generalization[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver: NeurIPS, 2020: 4697-4708.
|
[12] |
MISHRA S, AYYUB B M. Shannon entropy for quantifying uncertainty and risk in economic disparity[J]. Risk Analysis, 2019, 39(10): 2160-2181. doi: 10.1111/risa.13313
|
[13] |
姚源涛. 基于深度知识迁移的新型核系统诊断预测与容错技术研究[D]. 合肥: 中国科学技术大学,2021.
|
[14] |
YAO Y T, WANG J Y, XIE M. Adaptive residual CNN-based fault detection and diagnosis system of small modular reactors[J]. Applied Soft Computing, 2022, 114: 108064. doi: 10.1016/j.asoc.2021.108064
|
[15] |
Rahaman R. Uncertainty quantification and deep ensembles[J]. Advances in neural information processing systems, 2021, 34: 20063-20075.
|
[16] |
SADR M A M, GANTE J, CHAMPAGNE B, et al. Uncertainty estimation via Monte Carlo Dropout in CNN-based mmWave MIMO localization[J]. IEEE Signal Processing Letters, 2022, 29: 269-273. doi: 10.1109/LSP.2021.3130504
|