Advance Search
Turn off MathJax
Article Contents
Yao Yuantao, Zhe Na, Yong Nuo, Xia Dongqin, Ge Daochuan, Yu Jie. Intelligent Diagnosis and Monitoring for Abnormal Operation Event of Reactor Coolant System[J]. Nuclear Power Engineering. doi: 10.13832/j.jnpe.2024.080023
Citation: Yao Yuantao, Zhe Na, Yong Nuo, Xia Dongqin, Ge Daochuan, Yu Jie. Intelligent Diagnosis and Monitoring for Abnormal Operation Event of Reactor Coolant System[J]. Nuclear Power Engineering. doi: 10.13832/j.jnpe.2024.080023

Intelligent Diagnosis and Monitoring for Abnormal Operation Event of Reactor Coolant System

doi: 10.13832/j.jnpe.2024.080023
  • Received Date: 2024-08-13
  • Rev Recd Date: 2024-09-23
  • Available Online: 2025-01-15
  • In order to solve the problem that the traditional deep learning (DL)-based intelligent fault diagnosis model cannot monitor the unknown abnormal operation events, this work constructs an intelligent diagnosis framework based on the probabilistic deep neural network (VI-PDNN) model of variational inference, which realizes the diagnosis of the abnormal event categories of the reactor coolant system and quantitatively evaluates the uncertainty of the output results. The framework can effectively utilize the uncertainty difference between known and unknown operating events to achieve effective monitoring and warning of unknown abnormal operating events. Finally, the proposed methodology is validated based on simulation data from an established reactor simulator. The results show that the proposed method not only obtains high diagnostic accuracy for known events, but also effectively monitors and warns against unknown abnormal events, providing an effective means for real-time intelligent state diagnosis and monitoring of reactor system operation in real environment.

     

  • loading
  • [1]
    刘才学,罗能,何攀,等. 反应堆关键设备健康监测与故障诊断技术研究进展[J]. 核动力工程,2023, 44(3): 8-20.
    [2]
    张恒,吕雪,刘东,等. 核电人工智能应用: 现状、挑战和机遇[J]. 核动力工程,2023, 44(1): 1-8.
    [3]
    朱少民,夏虹,彭彬森,等. 基于PCA的主泵传感器状态监测模型[J]. 核动力工程,2020, 41(3): 170-176.
    [4]
    YAO Y T, WANG J, XIE M, et al. A new approach for fault diagnosis with full-scope simulator based on state information imaging in nuclear power plant[J]. Annals of Nuclear Energy, 2020, 141: 107274. doi: 10.1016/j.anucene.2019.107274
    [5]
    YU Y, PENG M J, WANG H, et al. Improved PCA model for multiple fault detection, isolation and reconstruction of sensors in nuclear power plant[J]. Annals of Nuclear Energy, 2020, 148: 107662. doi: 10.1016/j.anucene.2020.107662
    [6]
    曹桦松,孙培伟. 基于PCA-RBF神经网络的小型压水堆故障诊断方法研究[J]. 仪器仪表用户,2021, 28(1): 49-55.
    [7]
    LEE G, LEE S J, LEE C. A convolutional neural network model for abnormality diagnosis in a nuclear power plant[J]. Applied Soft Computing, 2021, 99: 106874. doi: 10.1016/j.asoc.2020.106874
    [8]
    邓强,王航,彭敏俊,等. 基于时间卷积胶囊网络的核动力装置事故诊断技术研究[J]. 原子能科学技术,2023, 57(2): 302-312. doi: 10.7538/yzk.2022.youxian.0218
    [9]
    NGUYEN H P, LIU J, ZIO E. A long-term prediction approach based on long short-term memory neural networks with automatic parameter optimization by Tree-structured Parzen Estimator and applied to time-series data of NPP steam generators[J]. Applied Soft Computing, 2020, 89: 106116. doi: 10.1016/j.asoc.2020.106116
    [10]
    孙原理,宋志浩. 基于卷积长短期记忆网络和人工鲸鱼算法的核反应堆运行事件诊断方法研究[J]. 核动力工程,2022, 43(4): 185-190.
    [11]
    WILSON A G, IZMAILOV P. Bayesian deep learning and a probabilistic perspective of generalization[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver: NeurIPS, 2020: 4697-4708.
    [12]
    MISHRA S, AYYUB B M. Shannon entropy for quantifying uncertainty and risk in economic disparity[J]. Risk Analysis, 2019, 39(10): 2160-2181. doi: 10.1111/risa.13313
    [13]
    姚源涛. 基于深度知识迁移的新型核系统诊断预测与容错技术研究[D]. 合肥: 中国科学技术大学,2021.
    [14]
    YAO Y T, WANG J Y, XIE M. Adaptive residual CNN-based fault detection and diagnosis system of small modular reactors[J]. Applied Soft Computing, 2022, 114: 108064. doi: 10.1016/j.asoc.2021.108064
    [15]
    Rahaman R. Uncertainty quantification and deep ensembles[J]. Advances in neural information processing systems, 2021, 34: 20063-20075.
    [16]
    SADR M A M, GANTE J, CHAMPAGNE B, et al. Uncertainty estimation via Monte Carlo Dropout in CNN-based mmWave MIMO localization[J]. IEEE Signal Processing Letters, 2022, 29: 269-273. doi: 10.1109/LSP.2021.3130504
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (9) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return