Advance Search
Volume 46 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
Niu Zhenfeng, Li Tong, Li Jiangkuan, Liu Yongchao, Lyu Wei, Tan Sichao, Tian Ruifeng. Study on Coordinated Control Method of Reactor Power Based on Multi-Agent Reinforcement Learning[J]. Nuclear Power Engineering, 2025, 46(2): 186-192. doi: 10.13832/j.jnpe.2024.080030
Citation: Niu Zhenfeng, Li Tong, Li Jiangkuan, Liu Yongchao, Lyu Wei, Tan Sichao, Tian Ruifeng. Study on Coordinated Control Method of Reactor Power Based on Multi-Agent Reinforcement Learning[J]. Nuclear Power Engineering, 2025, 46(2): 186-192. doi: 10.13832/j.jnpe.2024.080030

Study on Coordinated Control Method of Reactor Power Based on Multi-Agent Reinforcement Learning

doi: 10.13832/j.jnpe.2024.080030
  • Received Date: 2024-08-12
  • Rev Recd Date: 2024-11-12
  • Available Online: 2025-01-23
  • Publish Date: 2025-04-02
  • To improve the precision of coordinated control between reactor power and steam generator water levels in nuclear power plants, a multi-agent reinforcement learning coordination control framework based on Twin Delayed Deep Deterministic Policy Gradient (TD3) is proposed in this study, in which various subtasks are assigned to the corresponding agents, and these agents cooperate with each other to accurately coordinate the reactor power and steam generator water levels. Through a series of simulation experiments, the performance of the framework under different operating conditions was evaluated. The experimental results demonstrate that the multi-agent control framework significantly improves the control speed and stability under various power switching conditions, with both overshoot and control time outperforming traditional proportional integral differential (PID) controllers. In addition, the framework also shows excellent generalization ability in untrained new conditions, which can effectively improve the precision and stability of coordinated control of reactor power.

     

  • loading
  • [1]
    邱磊磊,张贤山,魏新宇,等. 自然循环蒸汽发生器的水位动态特性分析[J]. 核动力工程,2021,42(S2): 5-9.
    [2]
    彭彬森. 基于多智能体的蒸汽发生器建模与水位控制策略研究[D]. 哈尔滨: 哈尔滨工程大学,2021.
    [3]
    刘妍. 一体化反应堆协调控制技术研究[D]. 哈尔滨: 哈尔滨工程大学,2013.
    [4]
    邓志光,青先国,吴茜,等. ALSTM-GPC在核电厂协调控制系统中的应用[J]. 核动力工程,2021,42(S2): 41-47.
    [5]
    郭小梁. 船用核动力装置功率调节的协调控制方法研究[D]. 大连: 大连理工大学,2022.
    [6]
    刘永超,李桐,成以恒,等. 基于深度确定性策略梯度算法的自适应核反应堆功率控制器设计[J]. 原子能科学技术,2024,58(5): 1076-1083.
    [7]
    LI C, YU R, YU W M, et al. Reinforcement learning-based control with application to the once-through steam generator system[J]. Nuclear Engineering and Technology, 2023, 55(10): 3515-3524. doi: 10.1016/j.net.2023.06.001
    [8]
    GU S D, KUBA J G, CHEN Y P, et al. Safe multi-agent reinforcement learning for multi-robot control[J]. Artificial Intelligence, 2023, 319: 103905. doi: 10.1016/j.artint.2023.103905
    [9]
    CHU T S, WANG J, CODECÀ L, et al. Multi-agent deep reinforcement learning for large-scale traffic signal control[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 1086-1095. doi: 10.1109/TITS.2019.2901791
    [10]
    YU L, SUN Y, XU Z B, et al. Multi-agent deep reinforcement learning for HVAC control in commercial buildings[J]. IEEE Transactions on Smart Grid, 2021, 12(1): 407-419. doi: 10.1109/TSG.2020.3011739
    [11]
    KAZMI H, SUYKENS J, BALINT A, et al. Multi-agent reinforcement learning for modeling and control of thermostatically controlled loads[J]. Applied Energy, 2019, 238: 1022-1035. doi: 10.1016/j.apenergy.2019.01.140
    [12]
    LI F D, WU M, HE Y, et al. Optimal control in microgrid using multi-agent reinforcement learning[J]. ISA Transactions, 2012, 51(6): 743-751. doi: 10.1016/j.isatra.2012.06.010
    [13]
    FUJIMOTO S, HOOF H, MEGER D. Addressing function approximation error in actor-critic methods[C]//Proceedings of the 35th International Conference on Machine Learning. Stockholm, Sweden: PMLR, 2018.
    [14]
    汪明媚,程启明,王映斐,等. 基于自适应GA自抗扰控制在蒸汽发生器水位控制中的应用研究[J]. 核动力工程,2011,32(6): 28-33.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (62) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return