Citation: | Chen Gang, Zou Jian, Liu Shichang, Cai Yun, Wang Lianjie. Research on Optimization of Pressurized Water Reactor Core Loading Pattern Based on Neural Network and Genetic Algorithm[J]. Nuclear Power Engineering, 2025, 46(2): 164-176. doi: 10.13832/j.jnpe.2024.080038 |
[1] |
丁辉. 基于混合差分进化的智能核设计方法研究[D]. 合肥: 中国科学技术大学,2019.
|
[2] |
宫兆虎,姚栋,王侃. 一种新的堆芯装载方案优化算法[J]. 核动力工程,2010, 31(S2): 88-91.
|
[3] |
杨红义,王端,王东东. 神经网络算法在我国核领域中的应用综述[J]. 核科学与技术,2020, 8(1): 19-34.
|
[4] |
马季,郝琛,谢晓芹,等. 集成学习模型的堆芯物理关键参数预测[J]. 哈尔滨工程大学学报,2021, 42(12): 1769-1776.
|
[5] |
KIM H G, CHANG S H, LEE B H. Pressurized water reactor core parameter prediction using an artificial neural network[J]. Nuclear Science and Engineering, 1993, 113(1): 70-76. doi: 10.13182/NSE93-A23994
|
[6] |
PIROUZMAND A, DEHDASHTI M K. Estimation of relative power distribution and power peaking factor in a VVER-1000 reactor core using artificial neural networks[J]. Progress in Nuclear Energy, 2015, 85: 17-27. doi: 10.1016/j.pnucene.2015.06.001
|
[7] |
韦子豪,王端,王东东,等. 神经网络-遗传复合算法在压水堆堆芯换料设计中的应用[J]. 原子能科学技术,2020, 54(5): 825-834. doi: 10.7538/yzk.2019.youxian.0788
|
[8] |
雷铠灰,曹良志,万承辉,等. 基于深度卷积神经网络的堆芯换料方案性能评价研究[J]. 原子能科学技术,2021, 55(2): 279-285. doi: 10.7538/yzk.2020.youxian.0111
|
[9] |
ZHANG J C, ZHOU Y F, ZHANG Q, et al. Surrogate model of predicting eigenvalue and power distribution by convolutional neural network[J]. Frontiers in Energy Research, 2022, 10: 851231. doi: 10.3389/fenrg.2022.851231
|
[10] |
POON P W. Genetic algorithms and fuel cycle optimization[J]. Nuclear Engineer, 1990, 31(6): 173-177.
|
[11] |
KARAHROUDI M R, SHIRAZI S A M, SEPANLOO K. Optimization of designing the core fuel loading pattern in a VVER-1000 nuclear power reactor using the genetic algorithm[J]. Annals of Nuclear Energy, 2013, 57: 142-150. doi: 10.1016/j.anucene.2013.01.051
|
[12] |
周胜,胡永明,郑文祥. 大亚湾核电站首炉装载的遗传算法优化[J]. 清华大学学报: 自然科学版,2002, 42(12): 1624-1627.
|
[13] |
SRINIVAS N, DEB K. Muiltiobjective optimization using nondominated sorting in genetic algorithms[J]. Evolutionary Computation, 1994, 2(3): 221-248. doi: 10.1162/evco.1994.2.3.221
|
[14] |
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. doi: 10.1109/4235.996017
|
[15] |
DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601. doi: 10.1109/TEVC.2013.2281535
|
[16] |
吴高晨. 基于RMC的连续能量蒙特卡罗均匀化与群常数产生研究[D]. 北京: 清华大学,2018.
|
[17] |
MARLEAU G, HÉBERT A, ROY R. A user guide for DRAGON version 5: IGE-335[R]. Canada: École Polytechnique de Montréal Montréal QC, 2017.
|
[18] |
KIM I Y, DE WECK O L. Adaptive weighted-sum method for bi-objective optimization: Pareto front generation[J]. Structural and Multidisciplinary Optimization, 2005, 29(2): 149-158. doi: 10.1007/s00158-004-0465-1
|
[19] |
LIU S C, CAI J J. Studies of fuel loading pattern optimization for a typical pressurized water reactor (PWR) using improved pivot particle swarm method[J]. Annals of Nuclear Energy, 2012, 50: 117-125. doi: 10.1016/j.anucene.2012.08.007
|