Advance Search
Volume 46 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
Chen Gang, Zou Jian, Liu Shichang, Cai Yun, Wang Lianjie. Research on Optimization of Pressurized Water Reactor Core Loading Pattern Based on Neural Network and Genetic Algorithm[J]. Nuclear Power Engineering, 2025, 46(2): 164-176. doi: 10.13832/j.jnpe.2024.080038
Citation: Chen Gang, Zou Jian, Liu Shichang, Cai Yun, Wang Lianjie. Research on Optimization of Pressurized Water Reactor Core Loading Pattern Based on Neural Network and Genetic Algorithm[J]. Nuclear Power Engineering, 2025, 46(2): 164-176. doi: 10.13832/j.jnpe.2024.080038

Research on Optimization of Pressurized Water Reactor Core Loading Pattern Based on Neural Network and Genetic Algorithm

doi: 10.13832/j.jnpe.2024.080038
  • Received Date: 2024-08-14
  • Rev Recd Date: 2024-11-13
  • Available Online: 2025-01-23
  • Publish Date: 2025-04-02
  • Core loading pattern (LP) optimization can enhance the safety and economy of reactors. However, its optimization process demands a considerable amount of time-consuming computations and extensive manual experience. Aiming at the rapid evaluation issue of core LP schemes, this study employed the fully connected neural network (FCNN) and convolutional neural network (CNN) to establish a rapid prediction model for the neutronic parameters of the Daya Bay first-cycle core, enabling a rapid assessment of the pressurized water reactor core LP scheme. The generalization ability and accuracy of the prediction model were verified through the core calculation code DONJON. Regarding the global search issue of the core optimization scheme, the non-dominated sorting genetic algorithm (NSGA) was utilized to carry out multi-objective optimization of the LP scheme for the Daya Bay first-cycle core, and the optimization effect was enhanced by adjusting the parameters of the NSGA algorithm. The results suggest that the NSGA series of algorithms can be applied to various types of nuclear design optimization, including core LP optimization, and can make up for the poor global nature of manual search schemes. Simultaneously, the parallel optimization of the NSGA algorithm in combination with supercomputing can significantly enhance the optimization efficiency. For the rapid optimization of the core LP scheme, a joint optimization code was developed by leveraging the neural network prediction model based on GPU parallelism and the NSGA algorithm, achieving rapid optimization of the Daya Bay first-cycle core LP scheme. By comparing the optimization results of the joint optimization code with those of "DONJON + NSGA", it is shown that the joint optimization code of the neural network-genetic algorithm can obtain core LP schemes with relatively similar results while reducing the optimization time by over 99%.

     

  • loading
  • [1]
    丁辉. 基于混合差分进化的智能核设计方法研究[D]. 合肥: 中国科学技术大学,2019.
    [2]
    宫兆虎,姚栋,王侃. 一种新的堆芯装载方案优化算法[J]. 核动力工程,2010, 31(S2): 88-91.
    [3]
    杨红义,王端,王东东. 神经网络算法在我国核领域中的应用综述[J]. 核科学与技术,2020, 8(1): 19-34.
    [4]
    马季,郝琛,谢晓芹,等. 集成学习模型的堆芯物理关键参数预测[J]. 哈尔滨工程大学学报,2021, 42(12): 1769-1776.
    [5]
    KIM H G, CHANG S H, LEE B H. Pressurized water reactor core parameter prediction using an artificial neural network[J]. Nuclear Science and Engineering, 1993, 113(1): 70-76. doi: 10.13182/NSE93-A23994
    [6]
    PIROUZMAND A, DEHDASHTI M K. Estimation of relative power distribution and power peaking factor in a VVER-1000 reactor core using artificial neural networks[J]. Progress in Nuclear Energy, 2015, 85: 17-27. doi: 10.1016/j.pnucene.2015.06.001
    [7]
    韦子豪,王端,王东东,等. 神经网络-遗传复合算法在压水堆堆芯换料设计中的应用[J]. 原子能科学技术,2020, 54(5): 825-834. doi: 10.7538/yzk.2019.youxian.0788
    [8]
    雷铠灰,曹良志,万承辉,等. 基于深度卷积神经网络的堆芯换料方案性能评价研究[J]. 原子能科学技术,2021, 55(2): 279-285. doi: 10.7538/yzk.2020.youxian.0111
    [9]
    ZHANG J C, ZHOU Y F, ZHANG Q, et al. Surrogate model of predicting eigenvalue and power distribution by convolutional neural network[J]. Frontiers in Energy Research, 2022, 10: 851231. doi: 10.3389/fenrg.2022.851231
    [10]
    POON P W. Genetic algorithms and fuel cycle optimization[J]. Nuclear Engineer, 1990, 31(6): 173-177.
    [11]
    KARAHROUDI M R, SHIRAZI S A M, SEPANLOO K. Optimization of designing the core fuel loading pattern in a VVER-1000 nuclear power reactor using the genetic algorithm[J]. Annals of Nuclear Energy, 2013, 57: 142-150. doi: 10.1016/j.anucene.2013.01.051
    [12]
    周胜,胡永明,郑文祥. 大亚湾核电站首炉装载的遗传算法优化[J]. 清华大学学报: 自然科学版,2002, 42(12): 1624-1627.
    [13]
    SRINIVAS N, DEB K. Muiltiobjective optimization using nondominated sorting in genetic algorithms[J]. Evolutionary Computation, 1994, 2(3): 221-248. doi: 10.1162/evco.1994.2.3.221
    [14]
    DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. doi: 10.1109/4235.996017
    [15]
    DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601. doi: 10.1109/TEVC.2013.2281535
    [16]
    吴高晨. 基于RMC的连续能量蒙特卡罗均匀化与群常数产生研究[D]. 北京: 清华大学,2018.
    [17]
    MARLEAU G, HÉBERT A, ROY R. A user guide for DRAGON version 5: IGE-335[R]. Canada: École Polytechnique de Montréal Montréal QC, 2017.
    [18]
    KIM I Y, DE WECK O L. Adaptive weighted-sum method for bi-objective optimization: Pareto front generation[J]. Structural and Multidisciplinary Optimization, 2005, 29(2): 149-158. doi: 10.1007/s00158-004-0465-1
    [19]
    LIU S C, CAI J J. Studies of fuel loading pattern optimization for a typical pressurized water reactor (PWR) using improved pivot particle swarm method[J]. Annals of Nuclear Energy, 2012, 50: 117-125. doi: 10.1016/j.anucene.2012.08.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(7)

    Article Metrics

    Article views (54) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return