Advance Search
Volume 46 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
Chen Jing, Chen Yan, Jiang Hao, Duan Pengbin, Lin Weiqing, Qiu Xinghua, Xu Yong. Research on Prediction Method of Reactor Axial Power Deviation Based on Combined Feature Selection and Temporal Convolutional Network[J]. Nuclear Power Engineering, 2025, 46(2): 239-247. doi: 10.13832/j.jnpe.2024.090021
Citation: Chen Jing, Chen Yan, Jiang Hao, Duan Pengbin, Lin Weiqing, Qiu Xinghua, Xu Yong. Research on Prediction Method of Reactor Axial Power Deviation Based on Combined Feature Selection and Temporal Convolutional Network[J]. Nuclear Power Engineering, 2025, 46(2): 239-247. doi: 10.13832/j.jnpe.2024.090021

Research on Prediction Method of Reactor Axial Power Deviation Based on Combined Feature Selection and Temporal Convolutional Network

doi: 10.13832/j.jnpe.2024.090021
  • Received Date: 2024-09-11
  • Rev Recd Date: 2024-09-28
  • Available Online: 2025-01-23
  • Publish Date: 2025-04-15
  • The axial power deviation of a reactor can reflect the axial power distribution of the core and the operation of the reactor. Aiming at the difficulties in predicting the axial power deviation under variable operating conditions, this paper proposes a prediction method of reactor axial power deviation based on the combined feature selection and temporal convolutional network (TCN). Taking the basic principle of axial power deviation control as the starting point, this paper analyzes the factors affecting the change of axial power deviation, comprehensively analyzes the redundancy and correlation among multi-dimensional features, uses the combined feature selection strategy to form the optimal feature subset for axial power deviation prediction, constructs the key correlation feature data for axial power deviation prediction, and inputs it into TCN to capture dynamic causality, so as to achieve the prediction of reactor axial power deviation. Experimental studies show that the proposed method can deeply explore the temporal causal change characteristics of the parameters related to the axial power deviation of the reactor, accurately predict the development trend of the axial power deviation, solve the problem that the traditional prediction model does not predict and track in time under complex operating conditions, and provide an auxiliary reference basis for the reactor status monitoring and safe operation of nuclear power plants.

     

  • loading
  • [1]
    舒印彪,赵勇,赵良,等. “双碳”目标下我国能源电力低碳转型路径[J]. 中国电机工程学报,2023, 43(5): 1663-1671.
    [2]
    董德英,张琳. 核保护系统响应时间自动测试系统设计[J]. 核电子学与探测技术,2020, 40(3): 504-507. doi: 10.3969/j.issn.0258-0934.2020.03.025
    [3]
    常晓露. 压水堆核电站轴向功率控制原理与方法[J]. 科技视界,2021(7): 88-89.
    [4]
    陈自强,陈成. 压水堆核电厂寿期末堆芯轴向功率偏差控制[J]. 核科学与工程,2012, 32(S1): 63-70.
    [5]
    胡晓英. 轴向偏差报警系统设计优化及KMP仪表调试问题研究[J]. 仪器仪表用户,2014, 21(1): 19-21. doi: 10.3969/j.issn.1671-1041.2014.01.004
    [6]
    陈静,卢燕臻,江灏,等. 基于孪生模型的堆芯自给能中子探测器信号异常检测[J]. 核动力工程,2023, 44(3): 210-216.
    [7]
    林蔚青,缪希仁,陈静,等. 时空信息融合的堆芯自给能中子探测器故障检测与隔离方法[J]. 中国电机工程学报,2024, 44(23): 9310-9322.
    [8]
    朱少民,夏虹,吕新知,等. 基于ARIMA和LSTM组合模型的核电厂主泵状态预测[J]. 核动力工程,2022, 43(2): 246-253.
    [9]
    张思原,卢忝余,曾辉,等. 基于LSTM的核电传感器多特征融合多步状态预测[J]. 核动力工程,2021, 42(4): 208-213.
    [10]
    RACHEAL S, LIU Y K, AYODEJI A. Evaluation of optimized machine learning models for nuclear reactor accident prediction[J]. Progress in Nuclear Energy, 2022, 149: 104263. doi: 10.1016/j.pnucene.2022.104263
    [11]
    KIM H, KIM J. Long-term prediction of safety parameters with uncertainty estimation in emergency situations at nuclear power plants[J]. Nuclear Engineering and Technology, 2023, 55(5): 1630-1643. doi: 10.1016/j.net.2023.01.026
    [12]
    CHEN F K, DONG X M, LUO Y C, et al. Research on the prediction of LOCA condition in nuclear power plants based on GRU recurrent neural network and its variants[J]. Quality and Reliability Engineering International, 2024, 40(2): 759-782. doi: 10.1002/qre.3446
    [13]
    FU Y J, ZHANG D Z, XIAO Y L, et al. An interpretable time series data prediction framework for severe accidents in nuclear power plants[J]. Entropy, 2023, 25(8): 1160. doi: 10.3390/e25081160
    [14]
    SHI T Z, SHE J K, LI P E, et al. A deep learning-based framework for the operation prediction of primary heat transfer loop in nuclear power plants[J]. Frontiers in Energy Research, 2023, 11: 1099326. doi: 10.3389/fenrg.2023.1099326
    [15]
    GONG H L, YU Y R, PENG X J, et al. A data-driven strategy for xenon dynamical forecasting using dynamic mode decomposition[J]. Annals of Nuclear Energy, 2020, 149: 107826. doi: 10.1016/j.anucene.2020.107826
    [16]
    PARK J H, AN Y J, YOO K H, et al. Leak flow prediction during loss of coolant accidents using deep fuzzy neural networks[J]. Nuclear Engineering and Technology, 2021, 53(8): 2547-2555. doi: 10.1016/j.net.2021.01.040
    [17]
    EJIGU D A, LIU X J. Gradient descent-particle swarm optimization based deep neural network predictive control of pressurized water reactor power[J]. Progress in Nuclear Energy, 2022, 145: 104108. doi: 10.1016/j.pnucene.2021.104108
    [18]
    PEDERSEN K T. Predicting xenon oscillations in PWRs using intrusive reduced order modelling[D]. Gothenburg: Chalmers University of Technology, 2023.
    [19]
    ABDULRAHEEM K K, TOLOKONSKY A O, LAIDANI Z. Adaptive second-order sliding-mode control for a pressurized water nuclear reactor in load following operation with Xenon oscillation suppression[J]. Nuclear Engineering and Design, 2022, 391: 111742. doi: 10.1016/j.nucengdes.2022.111742
    [20]
    刘国发,郭文琪. 核电厂仪表与控制[M]. 北京: 中国原子能出版社,2010: 143-146.
    [21]
    RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062): 1518-1524. doi: 10.1126/science.1205438
    [22]
    ZHANG Z C, HONG W C. Application of variational mode decomposition and chaotic grey wolf optimizer with support vector regression for forecasting electric loads[J]. Knowledge-Based Systems, 2021, 228: 107297. doi: 10.1016/j.knosys.2021.107297
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (38) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return