Advance Search
Volume 46 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
Li Xi, Wang Jiansheng, Yang Senquan, Xue Wei. Research on Intelligent Monitoring and Warning Algorithms for Unexpected Reactor Shutdown Events in Nuclear Power Plants[J]. Nuclear Power Engineering, 2025, 46(2): 222-229. doi: 10.13832/j.jnpe.2024.090025
Citation: Li Xi, Wang Jiansheng, Yang Senquan, Xue Wei. Research on Intelligent Monitoring and Warning Algorithms for Unexpected Reactor Shutdown Events in Nuclear Power Plants[J]. Nuclear Power Engineering, 2025, 46(2): 222-229. doi: 10.13832/j.jnpe.2024.090025

Research on Intelligent Monitoring and Warning Algorithms for Unexpected Reactor Shutdown Events in Nuclear Power Plants

doi: 10.13832/j.jnpe.2024.090025
  • Received Date: 2024-09-09
  • Rev Recd Date: 2024-10-23
  • Available Online: 2025-01-15
  • Publish Date: 2025-04-15
  • The detection of abnormal conditions during the operation of nuclear power plant units mainly relies on threshold alarm information from the Digital Control System (DCS), with a lack of trend analysis. This paper investigates the establishment of logical relationships between variables through event logic, and based on this, employs an Auto-Associative Neural Network (AANN) model for anomaly detection of correlated variables. Finally, it uses the Empirical Mode Decomposition (EMD) trend extraction algorithm and the Adaptive Sliding Window Holt Linear Trend (HOLT) model to predict abnormal variables. This approach can provide early warnings for shutdown and reactor trip events, enabling plant operators to detect and resolve issues earlier, thus improving the operational safety of nuclear power plants. Testing experiments were conducted using both simulated data and actual unit anomaly data. The results from real data experiments show a Mean Squared Error (MSE) of 0.1 and a Goodness of Fit (R2) of 0.99, with at least 1 hour of advance warning before shutdown actions. This confirms the accuracy and early warning capabilities of the proposed AANN-HOLT warning algorithm.

     

  • loading
  • [1]
    郑明光,张琴舜,徐济,等. 核电厂先进控制室报警系统[J]. 核动力工程,2001, 22(4): 354-359,384. doi: 10.3969/j.issn.0258-0926.2001.04.015
    [2]
    许勇,蔡云泽,宋林. 基于数据驱动的核电设备状态评估研究综述[J]. 上海交通大学学报,2022, 56(3): 267-278.
    [3]
    STEPHEN B, WEST G M, GALLOWAY S, et al. The use of Hidden Markov Models for anomaly detection in nuclear core condition monitoring[J]. IEEE Transactions on Nuclear Science, 2009, 56(2): 453-461. doi: 10.1109/TNS.2008.2011904
    [4]
    周柯,王晓明,李肖博,等. 基于ARIMA-BP组合模型的智能变电站遥测数据趋势性分析预警技术研究[J]. 哈尔滨理工大学学报,2023, 28(1): 97-104.
    [5]
    安吉振,乔世超,陈衡,等. 基于多元状态估计和向量相似度的电站磨煤机故障智能预警研究[J]. 热力发电,2022, 51(12): 64-71.
    [6]
    黄宇斐,石新发,贺石中,等. 一种基于主成分分析与支持向量机的风电齿轮箱故障诊断方法[J]. 热能动力工程,2022, 37(10): 175-181.
    [7]
    NGUYEN H P, LIU J, ZIO E. A long-term prediction approach based on long short-term memory neural networks with automatic parameter optimization by Tree-structured Parzen Estimator and applied to time-series data of NPP steam generators[J]. Applied Soft Computing, 2020, 89: 106116. doi: 10.1016/j.asoc.2020.106116
    [8]
    赵志宏,李晴,杨绍普,等. 基于BiLSTM与注意力机制的剩余使用寿命预测研究[J]. 振动与冲击,2022, 41(6): 44-50,196.
    [9]
    朱少民,夏虹,吕新知,等. 基于ARIMA和LSTM组合模型的核电厂主泵状态预测[J]. 核动力工程,2022, 43(2): 246-253.
    [10]
    宋威,丁一,赵凯,等. 基于EMD-LSTM的风机故障停机发生时间预测[J]. 计算机仿真,2023, 40(12): 113-118. doi: 10.3969/j.issn.1006-9348.2023.12.020
    [11]
    HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. doi: 10.1098/rspa.1998.0193
    [12]
    CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder–decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha: Association for Computational Linguistics, 2014: 1724-1734.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article views (33) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return