Citation: | Li Xi, Wang Jiansheng, Yang Senquan, Xue Wei. Research on Intelligent Monitoring and Warning Algorithms for Unexpected Reactor Shutdown Events in Nuclear Power Plants[J]. Nuclear Power Engineering, 2025, 46(2): 222-229. doi: 10.13832/j.jnpe.2024.090025 |
[1] |
郑明光,张琴舜,徐济,等. 核电厂先进控制室报警系统[J]. 核动力工程,2001, 22(4): 354-359,384. doi: 10.3969/j.issn.0258-0926.2001.04.015
|
[2] |
许勇,蔡云泽,宋林. 基于数据驱动的核电设备状态评估研究综述[J]. 上海交通大学学报,2022, 56(3): 267-278.
|
[3] |
STEPHEN B, WEST G M, GALLOWAY S, et al. The use of Hidden Markov Models for anomaly detection in nuclear core condition monitoring[J]. IEEE Transactions on Nuclear Science, 2009, 56(2): 453-461. doi: 10.1109/TNS.2008.2011904
|
[4] |
周柯,王晓明,李肖博,等. 基于ARIMA-BP组合模型的智能变电站遥测数据趋势性分析预警技术研究[J]. 哈尔滨理工大学学报,2023, 28(1): 97-104.
|
[5] |
安吉振,乔世超,陈衡,等. 基于多元状态估计和向量相似度的电站磨煤机故障智能预警研究[J]. 热力发电,2022, 51(12): 64-71.
|
[6] |
黄宇斐,石新发,贺石中,等. 一种基于主成分分析与支持向量机的风电齿轮箱故障诊断方法[J]. 热能动力工程,2022, 37(10): 175-181.
|
[7] |
NGUYEN H P, LIU J, ZIO E. A long-term prediction approach based on long short-term memory neural networks with automatic parameter optimization by Tree-structured Parzen Estimator and applied to time-series data of NPP steam generators[J]. Applied Soft Computing, 2020, 89: 106116. doi: 10.1016/j.asoc.2020.106116
|
[8] |
赵志宏,李晴,杨绍普,等. 基于BiLSTM与注意力机制的剩余使用寿命预测研究[J]. 振动与冲击,2022, 41(6): 44-50,196.
|
[9] |
朱少民,夏虹,吕新知,等. 基于ARIMA和LSTM组合模型的核电厂主泵状态预测[J]. 核动力工程,2022, 43(2): 246-253.
|
[10] |
宋威,丁一,赵凯,等. 基于EMD-LSTM的风机故障停机发生时间预测[J]. 计算机仿真,2023, 40(12): 113-118. doi: 10.3969/j.issn.1006-9348.2023.12.020
|
[11] |
HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. doi: 10.1098/rspa.1998.0193
|
[12] |
CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder–decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha: Association for Computational Linguistics, 2014: 1724-1734.
|