Citation: | Zhang Jing, Wang Mingjun, Tian Wenxi, Su Guanghui, Qiu Suizheng. Application of Artificial Intelligence Algorithms in Thermal-Hydraulic Analysis of Nuclear Reactors[J]. Nuclear Power Engineering, 2025, 46(2): 127-140. doi: 10.13832/j.jnpe.2024.090039 |
[1] |
FAROUGHI S A, PAWAR N M, FERNANDES C, et al. Physics-guided, physics-informed, and physics-encoded neural networks and operators in scientific computing: fluid and solid mechanics[J]. Journal of Computing and Information Science in Engineering, 2024, 24(4): 040802. doi: 10.1115/1.4064449
|
[2] |
YAO X. A review of evolutionary artificial neural networks[J]. International Journal of Intelligent Systems, 1993, 8(4): 539-567. doi: 10.1002/int.4550080406
|
[3] |
章静,丛腾龙,苏光辉,等. 遗传神经网络对水平通道流动沸腾传热系数的预测[J]. 原子能科学技术,2015, 49(1): 70-76. doi: 10.7538/yzk.2015.49.01.0070
|
[4] |
SCHMIDHUBER J. Deep learning in neural networks: an overview[J]. Neural Networks, 2015, 61: 85-117. doi: 10.1016/j.neunet.2014.09.003
|
[5] |
BALCILAR M, DALKILIC A S, WONGWISES S. Artificial neural network techniques for the determination of condensation heat transfer characteristics during downward annular flow of R134a inside a vertical smooth tube[J]. International Communications in Heat and Mass Transfer, 2011, 38(1): 75-84. doi: 10.1016/j.icheatmasstransfer.2010.10.009
|
[6] |
ABDI H, VALENTIN D, EDELMAN B. Neural networks[M]. Thousand Oaks: Sage Publications, 1999: 1-96.
|
[7] |
GOLDBERG D E, DEB K. A comparative analysis of selection schemes used in genetic algorithms[J]. Foundations of Genetic Algorithms, 1991, 1: 69-93.
|
[8] |
CUOMO S, DI COLA V S, GIAMPAOLO F, et al. Scientific machine learning through physics–informed neural networks: where we are and what's next[J]. Journal of Scientific Computing, 2022, 92(3): 88. doi: 10.1007/s10915-022-01939-z
|
[9] |
查文舒,李道伦,沈路航,等. 基于神经网络的偏微分方程求解方法研究综述[J]. 力学学报,2022, 54(3): 543-556. doi: 10.6052/0459-1879-21-617
|
[10] |
LIN P Y, HANRATTY T J. Effect of pipe diameter on flow patterns for air-water flow in horizontal pipes[J]. International Journal of Multiphase Flow, 1987, 13(4): 549-563. doi: 10.1016/0301-9322(87)90021-8
|
[11] |
MANDHANE J M, GREGORY G A, AZIZ K. A flow pattern map for gas-liquid flow in horizontal pipes[J]. International Journal of Multiphase Flow, 1974, 1(4): 537-553. doi: 10.1016/0301-9322(74)90006-8
|
[12] |
BARNEA D, LUNINSKI Y, TAITEL Y. Flow pattern in horizontal and vertical two phase flow in small diameter pipes[J]. The Canadian Journal of Chemical Engineering, 1983, 61(5): 617-620. doi: 10.1002/cjce.5450610501
|
[13] |
YANG Z J, DANG Z R, YANG X H, et al. Downward two phase flow experiment and general flow regime transition criteria for various pipe sizes[J]. International Journal of Heat and Mass Transfer, 2018, 125: 179-189. doi: 10.1016/j.ijheatmasstransfer.2018.03.072
|
[14] |
LEE J Y, ISHII M, KIM N S. Instantaneous and objective flow regime identification method for the vertical upward and downward co-current two-phase flow[J]. International Journal of Heat and Mass Transfer, 2008, 51(13-14): 3442-3459. doi: 10.1016/j.ijheatmasstransfer.2007.10.037
|
[15] |
PARANJAPE S, CHEN S W, HIBIKI T, et al. Flow regime identification under adiabatic upward two-phase flow in a vertical rod bundle geometry[J]. Journal of Fluids Engineering, 2011, 133(9): 091302. doi: 10.1115/1.4004836
|
[16] |
PAN L M, ZHANG M H, JU P, et al. Vertical co-current two-phase flow regime identification using fuzzy C-means clustering algorithm and ReliefF attribute weighting technique[J]. International Journal of Heat and Mass Transfer, 2016, 95: 393-404. doi: 10.1016/j.ijheatmasstransfer.2015.11.081
|
[17] |
TAMBOURATZIS T, PÀZSIT I. A general regression artificial neural network for two-phase flow regime identification[J]. Annals of Nuclear Energy, 2010, 37(5): 672-680. doi: 10.1016/j.anucene.2010.02.004
|
[18] |
OUYANG L, JIN N D, REN W K. A new deep neural network framework with multivariate time series for two-phase flow pattern identification[J]. Expert Systems with Applications, 2022, 205: 117704. doi: 10.1016/j.eswa.2022.117704
|
[19] |
MA Y C, KONG D X, ZHANG J, et al. Study on flow regime prediction model for water-cooled reactor core based on machine learning algorithms[J]. Annals of Nuclear Energy, 2024, 201: 110428. doi: 10.1016/j.anucene.2024.110428
|
[20] |
LIU W, NARIAI H. Ultrahigh CHF prediction for subcooled flow boiling based on homogenous nucleation mechanism[J]. Journal of Heat Transfer, 2005, 127(2): 149-158. doi: 10.1115/1.1844536
|
[21] |
WEISMAN J, ILESLAMLOU S. A phenomenological model for prediction of critical heat flux under highly subcooled conditions[J]. Fusion Technology, 1988, 13(4): 654-659. doi: 10.13182/FST88-A25140
|
[22] |
KWON Y M, CHANG S H. A mechanistic critical heat flux model for wide range of subcooled and low quality flow boiling[J]. Nuclear Engineering and Design, 1999, 188(1): 27-47. doi: 10.1016/S0029-5493(99)00025-4
|
[23] |
KATTO Y. A prediction model of subcooled water flow boiling CHF for pressure in the range 0.1-20 MPa[J]. International Journal of Heat and Mass Transfer, 1992, 35(5): 1115-1123. doi: 10.1016/0017-9310(92)90172-O
|
[24] |
LEE C H, MUDAWWAR I. A mechanistic critical heat flux model for subcooled flow boiling based on local bulk flow conditions[J]. International Journal of Multiphase Flow, 1988, 14(6): 711-728. doi: 10.1016/0301-9322(88)90070-5
|
[25] |
CELATA G P, CUMO M, MARIANI A, et al. Rationalization of existing mechanistic models for the prediction of water subcooled flow boiling critical heat flux[J]. International Journal of Heat and Mass Transfer, 1994, 37(S1): 347-360.
|
[26] |
LIU W, NARIAI H, INASAKA F. Prediction of critical heat flux for subcooled flow boiling[J]. International Journal of Heat and Mass Transfer, 2000, 43(18): 3371-3390. doi: 10.1016/S0017-9310(99)00373-7
|
[27] |
PAYAN-RODRIGUEZ L A, GALLEGOS-MUÑOZ A, PORRAS-LOAIZA G L, et al. Critical heat flux prediction for water boiling in vertical tubes of a steam generator[J]. International Journal of Thermal Sciences, 2005, 44(2): 179-188. doi: 10.1016/j.ijthermalsci.2004.05.003
|
[28] |
周磊,闫晓,黄善仿,等. 基于矩形窄缝通道实验数据的DNB机理模型评价[J]. 原子能科学技术,2011, 45(11): 1317-1323. doi: 10.7538/yzk.2011.45.11.1317
|
[29] |
VAN DER MOLEN S B, GALJEE F W B M. The boiling mechanism during burnout phenomena in subcooled two-phase water flows[J]. Flow Boiling and Two-Phase, 1978, 1: 381-385.
|
[30] |
MOON S K, CHANG S H. Classification and prediction of the critical heat flux using fuzzy theory and artificial neural networks[J]. Nuclear Engineering and Design, 1994, 150(1): 151-161. doi: 10.1016/0029-5493(94)90059-0
|
[31] |
MAZZOLA A. Integrating artificial neural networks and empirical correlations for the prediction of water-subcooled critical heat flux[J]. Revue Générale de Thermique, 1997, 36(11): 799-806.
|
[32] |
GUANGHUI S, MORITA K, FUKUDA K, et al. Analysis of the critical heat flux in round vertical tubes under low pressure and flow oscillation conditions. Applications of artificial neural network[J]. Nuclear Engineering and Design, 2003, 220(1): 17-35. doi: 10.1016/S0029-5493(02)00304-7
|
[33] |
ZHAO X G, SHIRVAN K, SALKO R K, et al. On the prediction of critical heat flux using a physics-informed machine learning-aided framework[J]. Applied Thermal Engineering, 2020, 164: 114540. doi: 10.1016/j.applthermaleng.2019.114540
|
[34] |
CHEN R H, SU G H, QIU S Z, et al. Prediction of CHF in concentric-tube open thermosiphon using artificial neural network and genetic algorithm[J]. Heat and Mass Transfer, 2010, 46(3): 345-353. doi: 10.1007/s00231-010-0575-9
|
[35] |
CONG T L, SU G G, QIU S Z, et al. Applications of ANNs in flow and heat transfer problems in nuclear engineering: a review work[J]. Progress in Nuclear Energy, 2013, 62: 54-71. doi: 10.1016/j.pnucene.2012.09.003
|
[36] |
WEI H M, SU G H, TIAN W X, et al. Study on dryout point by wavelet and GNN[J]. Applied Thermal Engineering, 2010, 30(6-7): 664-672. doi: 10.1016/j.applthermaleng.2009.11.014
|
[37] |
KIM H, MOON J, HONG D J, et al. Prediction of critical heat flux for narrow rectangular channels in a steady state condition using machine learning[J]. Nuclear Engineering and Technology, 2021, 53(6): 1796-1809. doi: 10.1016/j.net.2020.12.007
|
[38] |
ZHANG J F, ZHONG D W, SHI H P, et al. Machine learning prediction of critical heat flux on downward facing surfaces[J]. International Journal of Heat and Mass Transfer, 2022, 191: 122857. doi: 10.1016/j.ijheatmasstransfer.2022.122857
|
[39] |
QIU Z F, MA Y C, HUANG T, et al. Development and application of data-driven CHF model in system analysis code[J]. Nuclear Engineering and Design, 2024, 428: 113488. doi: 10.1016/j.nucengdes.2024.113488
|
[40] |
CHEN J C. Correlation for boiling heat transfer to saturated fluids in convective flow[J]. Industrial & Engineering Chemistry Process Design and Development, 1966, 5(3): 322-329.
|
[41] |
SHAH M M. Chart correlation for saturated boiling heat transfer: equations and further study[J]. ASHRAE Transactions, 1982, 88: 165-196.
|
[42] |
KANDLIKAR S G, STEINKE M E. Predicting heat transfer during flow boiling in minichannels and microchannels[J]. ASHRAE Transactions, 2003, 109: 667-676.
|
[43] |
JAMBUNATHAN K, HARTLE S L, ASHFORTH-FROST S, et al. Evaluating convective heat transfer coefficients using neural networks[J]. International Journal of Heat and Mass Transfer, 1996, 39(11): 2329-2332. doi: 10.1016/0017-9310(95)00332-0
|
[44] |
ZHANG J, MA Y C, WANG M J, et al. Prediction of flow boiling heat transfer coefficient in horizontal channels varying from conventional to small-diameter scales by genetic neural network[J]. Nuclear Engineering and Technology, 2019, 51(8): 1897-1904. doi: 10.1016/j.net.2019.06.009
|
[45] |
ZHOU L W, GARG D, QIU Y, et al. Machine learning algorithms to predict flow condensation heat transfer coefficient in mini/micro-channel utilizing universal data[J]. International Journal of Heat and Mass Transfer, 2020, 162: 120351. doi: 10.1016/j.ijheatmasstransfer.2020.120351
|
[46] |
BARD A, QIU Y, KHARANGATE C R, et al. Consolidated modeling and prediction of heat transfer coefficients for saturated flow boiling in mini/micro-channels using machine learning methods[J]. Applied Thermal Engineering, 2022, 210: 118305. doi: 10.1016/j.applthermaleng.2022.118305
|
[47] |
WEI H M, SU G H, TIAN W X, et al. Study on the characteristic points of boiling curve by using wavelet analysis and genetic neural network[J]. Nuclear Engineering and Design, 2009, 239(11): 2317-2325. doi: 10.1016/j.nucengdes.2009.07.016
|
[48] |
WEI H M, SU G H, TIAN W X, et al. Study on the onset of nucleate boiling in narrow annular channel by genetic neural network[J]. International Communications in Heat and Mass Transfer, 2010, 37(6): 596-599. doi: 10.1016/j.icheatmasstransfer.2009.11.017
|
[49] |
ZHANG J, CHEN R H, WANG M J, et al. Prediction of LBB leakage for various conditions by genetic neural network and genetic algorithms[J]. Nuclear Engineering and Design, 2017, 325: 33-43. doi: 10.1016/j.nucengdes.2017.09.027
|
[50] |
MOODY F J. Closure to “discussions of ‘maximum flow rate of a single component, two-phase mixture’” (1965, ASME J. Heat Transfer, 87, pp. 141–142)[J]. Journal of Heat Transfer, 1965, 87(1): 142. doi: 10.1115/1.3689034
|
[51] |
WALLIS G B. One-dimensional two-phase flow[M]. Garden City: Dover Publications, 2020: 1-432.
|
[52] |
FAUSKE H K. Contribution to the theory of two-phase, one-component critical flow[R]. Argonne: Argonne National Laboratory, 1962.
|
[53] |
HENRY R E, FAUSKE H K, MCCOMAS S T. Two-phase critical flow at low qualities part I: experimental[J]. Nuclear Science and Engineering, 1970, 41(1): 79-91. doi: 10.13182/NSE70-A20366
|
[54] |
龚禾林,洪历展,赵文博,等. 基于“全局-局部”搜索的核反应堆运行孪生反问题求解[J]. 原子能科学技术,2024, 58(7): 1424-1431.
|
[55] |
王伟伟. AP1000典型事故工况瞬态热工水力特性研究[D]. 西安: 西安交通大学,2017.
|
[56] |
KHUWAILEH B A, TURINSKY P J. Surrogate based model calibration for pressurized water reactor physics calculations[J]. Nuclear Engineering and Technology, 2017, 49(6): 1219-1225. doi: 10.1016/j.net.2017.08.007
|
[57] |
LANAHAN M L, ABDEL-KHALIK S I, YODA M. Bayesian parameter estimation of the k-ω shear stress transport model for accurate simulations of impinging-jet heat transfer[J]. Fusion Science and Technology, 2023, 79(8): 1071-1081. doi: 10.1080/15361055.2023.2177065
|
[58] |
ZAJTSEV P A, PRIJMAK S V, OLEJNIKOV P P, et al. Models of the drift of the calibration curves of thermocouples and resistance thermometers under reactor conditions[J]. Atomic Energy, 2013, 113(3): 219-221. doi: 10.1007/s10512-012-9620-8
|
[59] |
KHVOSTOV G. Calibration and validation of thermal fuel behaviour models based on the first case of the first IAEA CRP FUMEX[J]. Journal of Nuclear Materials, 2023, 584: 154588. doi: 10.1016/j.jnucmat.2023.154588
|
[60] |
PERRET G, WICAKSONO D, CLIFFORD I D, et al. Global sensitivity analysis and bayesian calibration on a series of reflood experiments with varying boundary conditions[J]. Nuclear Technology, 2022, 208(4): 711-722. doi: 10.1080/00295450.2021.1936879
|
[61] |
LEFEBVRE L, SEGOND M, SPAGGIARI R, et al. Improving the predictivity of a steam generator clogging numerical model by global sensitivity analysis and Bayesian calibration techniques[J]. Nuclear Science and Engineering, 2023, 197(8): 2136-2149. doi: 10.1080/00295639.2023.2206769
|
[62] |
丁政韬. 基于实测数据的反应堆热工水力模型校准及同化技术研究[D]. 西安: 西安交通大学,2024.
|
[63] |
宫鹏. 遥感科学与技术中的一些前沿问题[J]. 遥感学报,2009, 13(1): 13-23.
|
[64] |
马建文,秦思娴. 数据同化算法研究现状综述[J]. 地球科学进展,2012, 27(7): 747-757.
|
[65] |
DENG Z W, HE C X, WEN X, et al. Recovering turbulent flow field from local quantity measurement: turbulence modeling using ensemble-Kalman-filter-based data assimilation[J]. Journal of Visualization, 2018, 21(6): 1043-1063. doi: 10.1007/s12650-018-0508-0
|
[66] |
SUAREZ G, ZHOU B Y, OEZKAYA E, et al. Towards turbulence modeling enhancement via the correction of Boussinesq’s hypothesis - a data-driven approach[C]//AIAA Aviation 2021 Forum. Virtual Event: American Institute of Aeronautics and Astronautics, 2021.
|
[67] |
CHANDRAMOULI P, MEMIN E, HEITZ D. 4D variational data assimilation with large eddy simulation[C]//AIAA Aviation 2019 Forum. Dallas: American Institute of Aeronautics and Astronautics, 2019.
|
[68] |
SAKOE H, CHIBA S. Dynamic programming algorithm optimization for spoken word recognition[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1978, 26(1): 43-49. doi: 10.1109/TASSP.1978.1163055
|
[69] |
GILLISSEN J J J, BOUFFANAIS R, YUE D K P. Data assimilation method to de-noise and de-filter particle image velocimetry data[J]. Journal of Fluid Mechanics, 2019, 877: 196-213. doi: 10.1017/jfm.2019.602
|
[70] |
PAN Z, ZHANG Y, GUSTAVSSON J P R, et al. Unscented Kalman filter (UKF)–based nonlinear parameter estimation for a turbulent boundary layer: a data assimilation framework[J]. Measurement Science and Technology, 2020, 31(9): 094011. doi: 10.1088/1361-6501/ab8904
|
[71] |
ZHENG D, LEUNG J, LEE B, et al. Data assimilation in the atmospheric dispersion model for nuclear accident assessments[J]. Atmospheric Environment, 2007, 41(11): 2438-2446. doi: 10.1016/j.atmosenv.2006.05.076
|
[72] |
袁彪,王良瑜,绪梅,等. 数据同化在核事故辐射场评估中的应用研究[J]. 中国安全科学学报,2015, 25(5): 31-36.
|
[73] |
SUNDAR S, RAJAGOPAL M C, ZHAO H Y, et al. Fouling modeling and prediction approach for heat exchangers using deep learning[J]. International Journal of Heat and Mass Transfer, 2020, 159: 120112. doi: 10.1016/j.ijheatmasstransfer.2020.120112
|
[74] |
HOSSEINI S, KHANDAKAR A, CHOWDHURY M E H, et al. Novel and robust machine learning approach for estimating the fouling factor in heat exchangers[J]. Energy Reports, 2022, 8: 8767-8776. doi: 10.1016/j.egyr.2022.06.123
|
[75] |
LI Q, ZHAN Q, YU S P, et al. Study on thermal-hydraulic performance of printed circuit heat exchangers with supercritical methane based on machine learning methods[J]. Energy, 2023, 282: 128711. doi: 10.1016/j.energy.2023.128711
|
[76] |
LONGO G A, MANCIN S, RIGHETTI G, et al. Machine learning approach for predicting refrigerant two-phase pressure drop inside Brazed Plate Heat Exchangers (BPHE)[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120450. doi: 10.1016/j.ijheatmasstransfer.2020.120450
|
[77] |
EL-SAID E M S, ABD ELAZIZ M, ELSHEIKH A H. Machine learning algorithms for improving the prediction of air injection effect on the thermohydraulic performance of shell and tube heat exchanger[J]. Applied Thermal Engineering, 2021, 185: 116471. doi: 10.1016/j.applthermaleng.2020.116471
|
[78] |
ZHU G Y, WEN T, ZHANG D L. Machine learning based approach for the prediction of flow boiling/condensation heat transfer performance in mini channels with serrated fins[J]. International Journal of Heat and Mass Transfer, 2021, 166: 120783. doi: 10.1016/j.ijheatmasstransfer.2020.120783
|
[79] |
MOHAMMADPOUR J, HUSAIN S, SALEHI F, et al. Machine learning regression-CFD models for the nanofluid heat transfer of a microchannel heat sink with double synthetic jets[J]. International Communications in Heat and Mass Transfer, 2022, 130: 105808. doi: 10.1016/j.icheatmasstransfer.2021.105808
|
[80] |
WANG Q, ZHOU W W, YANG L, et al. Comparison between conventional and deep learning-based surrogate models in predicting convective heat transfer performance of U-bend channels[J]. Energy and AI, 2022, 8: 100140. doi: 10.1016/j.egyai.2022.100140
|
[81] |
EOM Y H, CHUNG Y, PARK M, et al. Deep learning-based prediction method on performance change of air source heat pump system under frosting conditions[J]. Energy, 2021, 228: 120542. doi: 10.1016/j.energy.2021.120542
|
[82] |
叶伊博. 基于机器学习的蒸汽发生器污垢热阻及三维温度场快速预测研究[D]. 西安: 西安交通大学,2024.
|
[83] |
GIRFOGLIO M, QUAINI A, ROZZA G. A POD-Galerkin reduced order model for the Navier–Stokes equations in stream function-vorticity formulation[J]. Computers & Fluids, 2022, 244: 105536.
|
[84] |
HE S P, WANG M J, ZHANG J, et al. A deep-learning reduced-order model for thermal hydraulic characteristics rapid estimation of steam generators[J]. International Journal of Heat and Mass Transfer, 2022, 198: 123424. doi: 10.1016/j.ijheatmasstransfer.2022.123424
|
[85] |
KANG H L, TIAN Z F, CHEN G L, et al. Application of POD reduced-order algorithm on data-driven modeling of rod bundle[J]. Nuclear Engineering and Technology, 2022, 54(1): 36-48. doi: 10.1016/j.net.2021.07.010
|
[86] |
THUEREY N, WEIßENOW K, PRANTL L, et al. Deep learning methods for reynolds-averaged Navier-Stokes simulations of airfoil flows[J]. AIAA Journal, 2020, 58(1): 15-26.
|
[87] |
BHATNAGAR S, AFSHAR Y, PAN S W, et al. Prediction of aerodynamic flow fields using convolutional neural networks[J]. Computational Mechanics, 2019, 64(2): 525-545. doi: 10.1007/s00466-019-01740-0
|
[88] |
MOHAN A T, GAITONDE D V. A deep learning based approach to reduced order modeling for turbulent flow control using LSTM neural networks[J]. arXiv preprint arXiv, 2018, 1804.09269.
|
[89] |
GERMAN P, TANO M, FIORINA C, et al. GeN-ROM—an OpenFOAM®-based multiphysics reduced-order modeling framework for the analysis of Molten Salt Reactors[J]. Progress in Nuclear Energy, 2022, 146: 104148. doi: 10.1016/j.pnucene.2022.104148
|
[90] |
邱亚松,白俊强,华俊. 基于本征正交分解和代理模型的流场预测方法[J]. 航空学报,2013, 34(6): 1249-1260.
|
[91] |
YANG J, SUI X, HUANG Y P, et al. Assessment of reactor flow field prediction based on deep learning and model reduction[J]. Annals of Nuclear Energy, 2022, 179: 109367. doi: 10.1016/j.anucene.2022.109367
|
[92] |
GADALLA M, CIANFERRA M, TEZZELE M, et al. On the comparison of LES data-driven reduced order approaches for hydroacoustic analysis[J]. Computers & Fluids, 2021, 216: 104819.
|
[93] |
MA W J, ZHANG J, YU J. Non-intrusive reduced order modeling for flowfield reconstruction based on residual neural network[J]. Acta Astronautica, 2021, 183: 346-362. doi: 10.1016/j.actaastro.2020.11.050
|