Advance Search
Volume 46 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
Jiang Yong, An Ping, Liu Dong, Yu Yang. Research on the Solution and Acceleration Algorithm of Source Iteration Method Based on PINN[J]. Nuclear Power Engineering, 2025, 46(2): 148-155. doi: 10.13832/j.jnpe.2024.090040
Citation: Jiang Yong, An Ping, Liu Dong, Yu Yang. Research on the Solution and Acceleration Algorithm of Source Iteration Method Based on PINN[J]. Nuclear Power Engineering, 2025, 46(2): 148-155. doi: 10.13832/j.jnpe.2024.090040

Research on the Solution and Acceleration Algorithm of Source Iteration Method Based on PINN

doi: 10.13832/j.jnpe.2024.090040
  • Received Date: 2024-09-16
  • Rev Recd Date: 2024-12-22
  • Available Online: 2025-01-15
  • Publish Date: 2025-04-02
  • This paper integrates physics-driven artificial intelligence methods with the traditional source iteration method to establish a novel approach for solving the few-group diffusion equations, and employs the Anderson acceleration method to accelerate the iterative source term. The results of numerical examples such as two-dimensional multi material and three-dimensional single material show that the combination of physics-driven Physics-Informed Neural Networks (PINN) and traditional source iteration method can calculate the continuous neutron flux density distribution while ensuring calculation accuracy. The use of Anderson acceleration method can reduce the number of iteration, ssuccessfully achieving the forward solution of the few-group neutron diffusion equations. This advancement promotes the application of artificial intelligence algorithms in the nuclear field.

     

  • loading
  • [1]
    RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045
    [2]
    LU L, MENG X H, MAO Z P, et al. DeepXDE: a deep learning library for solving differential equations[J]. SIAM Review, 2021, 63(1): 208-228. doi: 10.1137/19M1274067
    [3]
    LU L, JIN P Z, PANG G F, et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators[J]. Nature Machine Intelligence, 2021, 3(3): 218-229. doi: 10.1038/s42256-021-00302-5
    [4]
    PANG G F, LU L, KARNIADAKIS G E. fPINNs: fractional physics-informed neural networks[J]. SIAM Journal on Scientific Computing, 2019, 41(4): A2603-A2626. doi: 10.1137/18M1229845
    [5]
    YANG L, MENG X H, KARNIADAKIS G E. B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data[J]. Journal of Computational Physics, 2021, 425: 109913. doi: 10.1016/j.jcp.2020.109913
    [6]
    JAGTAP A D, KHARAZMI E, KARNIADAKIS G E. Conservative physics-informed neural networks on discrete domains for conservation laws: applications to forward and inverse problems[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 365: 113028. doi: 10.1016/j.cma.2020.113028
    [7]
    MENG X H, LI Z, ZHANG D K, et al. PPINN: parareal physics-informed neural network for time-dependent PDEs[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 370: 113250. doi: 10.1016/j.cma.2020.113250
    [8]
    刘东,罗琦,唐雷,等. 基于PINN深度机器学习技术求解多维中子学扩散方程[J]. 核动力工程,2022, 43(2): 1-8.
    [9]
    WANG J Y, PENG X J, CHEN Z, et al. Surrogate modeling for neutron diffusion problems based on conservative physics-informed neural networks with boundary conditions enforcement[J]. Annals of Nuclear Energy, 2022, 176: 109234. doi: 10.1016/j.anucene.2022.109234
    [10]
    刘东,唐雷,安萍,等. 核反应堆有效增殖系数深度学习直接搜索求解方法[J]. 核动力工程,2023, 44(5): 6-14.
    [11]
    ANDERSON D G. Iterative procedures for nonlinear integral equations[J]. Journal of the ACM (JACM), 1965, 12(4): 547-560. doi: 10.1145/321296.321305
    [12]
    HAMILTON S, BERRILL M, CLARNO K, et al. An assessment of coupling algorithms for nuclear reactor core physics simulations[J]. Journal of Computational Physics, 2016, 311: 241-257. doi: 10.1016/j.jcp.2016.02.012
    [13]
    PAWLOWSKI R P, SALINGER A G. On the performance of Anderson acceleration for multiphysics problems, SAND2015-2023C[R]. Albuquerque: Sandia National Lab. , 2015.
    [14]
    AN P, MA Y Q, XIAO P, et al. Development and validation of reactor nuclear design code CORCA-3D[J]. Nuclear Engineering and Technology, 2019, 51(7): 1721-1728. doi: 10.1016/j.net.2019.05.015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views (29) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return