Citation: | Jiang Yong, An Ping, Liu Dong, Yu Yang. Research on the Solution and Acceleration Algorithm of Source Iteration Method Based on PINN[J]. Nuclear Power Engineering, 2025, 46(2): 148-155. doi: 10.13832/j.jnpe.2024.090040 |
[1] |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045
|
[2] |
LU L, MENG X H, MAO Z P, et al. DeepXDE: a deep learning library for solving differential equations[J]. SIAM Review, 2021, 63(1): 208-228. doi: 10.1137/19M1274067
|
[3] |
LU L, JIN P Z, PANG G F, et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators[J]. Nature Machine Intelligence, 2021, 3(3): 218-229. doi: 10.1038/s42256-021-00302-5
|
[4] |
PANG G F, LU L, KARNIADAKIS G E. fPINNs: fractional physics-informed neural networks[J]. SIAM Journal on Scientific Computing, 2019, 41(4): A2603-A2626. doi: 10.1137/18M1229845
|
[5] |
YANG L, MENG X H, KARNIADAKIS G E. B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data[J]. Journal of Computational Physics, 2021, 425: 109913. doi: 10.1016/j.jcp.2020.109913
|
[6] |
JAGTAP A D, KHARAZMI E, KARNIADAKIS G E. Conservative physics-informed neural networks on discrete domains for conservation laws: applications to forward and inverse problems[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 365: 113028. doi: 10.1016/j.cma.2020.113028
|
[7] |
MENG X H, LI Z, ZHANG D K, et al. PPINN: parareal physics-informed neural network for time-dependent PDEs[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 370: 113250. doi: 10.1016/j.cma.2020.113250
|
[8] |
刘东,罗琦,唐雷,等. 基于PINN深度机器学习技术求解多维中子学扩散方程[J]. 核动力工程,2022, 43(2): 1-8.
|
[9] |
WANG J Y, PENG X J, CHEN Z, et al. Surrogate modeling for neutron diffusion problems based on conservative physics-informed neural networks with boundary conditions enforcement[J]. Annals of Nuclear Energy, 2022, 176: 109234. doi: 10.1016/j.anucene.2022.109234
|
[10] |
刘东,唐雷,安萍,等. 核反应堆有效增殖系数深度学习直接搜索求解方法[J]. 核动力工程,2023, 44(5): 6-14.
|
[11] |
ANDERSON D G. Iterative procedures for nonlinear integral equations[J]. Journal of the ACM (JACM), 1965, 12(4): 547-560. doi: 10.1145/321296.321305
|
[12] |
HAMILTON S, BERRILL M, CLARNO K, et al. An assessment of coupling algorithms for nuclear reactor core physics simulations[J]. Journal of Computational Physics, 2016, 311: 241-257. doi: 10.1016/j.jcp.2016.02.012
|
[13] |
PAWLOWSKI R P, SALINGER A G. On the performance of Anderson acceleration for multiphysics problems, SAND2015-2023C[R]. Albuquerque: Sandia National Lab. , 2015.
|
[14] |
AN P, MA Y Q, XIAO P, et al. Development and validation of reactor nuclear design code CORCA-3D[J]. Nuclear Engineering and Technology, 2019, 51(7): 1721-1728. doi: 10.1016/j.net.2019.05.015
|