Citation: | Ding Yongwang, Zhang Han, Peng Chuzhen, Wu Yingjie, Guo Jiong, Peng Wei, Zhang Ping, Li Fu. POD-RBF Based ROM Method to Calculate Temporal-Spatial Temperature Distribution under DLOFC Accident for VHTR[J]. Nuclear Power Engineering, 2025, 46(2): 107-118. doi: 10.13832/j.jnpe.2024.10.0056 |
[1] |
ZHENG Y H, STEMPNIEWICZ M M, CHEN Z P, et al. Study on the DLOFC and PLOFC accidents of the 200 MWe pebble-bed modular high temperature gas-cooled reactor with TINTE and SPECTRA codes[J]. Annals of Nuclear Energy, 2018, 120: 763-777. doi: 10.1016/j.anucene.2018.06.041
|
[2] |
CHI H H, MA Y, WANG Y H. Reduced-order methods for neutron transport kinetics problem based on proper orthogonal decomposition and dynamic mode decomposition[J]. Annals of Nuclear Energy, 2024, 206: 110641. doi: 10.1016/j.anucene.2024.110641
|
[3] |
WANG Y H, CHI H H, MA Y. Nodal expansion method based reduced-order model for control rod movement[J]. Annals of Nuclear Energy, 2024, 198: 110279. doi: 10.1016/j.anucene.2023.110279
|
[4] |
CHI H H, WANG Y H, MA Y. Reduced-order with least square-finite difference method for neutron transport equation[J]. Annals of Nuclear Energy, 2023, 191: 109914. doi: 10.1016/j.anucene.2023.109914
|
[5] |
ZHANG C Y, CHEN G. Fast solution of neutron diffusion problem by reduced basis finite element method[J]. Annals of Nuclear Energy, 2018, 111: 702-708. doi: 10.1016/j.anucene.2017.09.044
|
[6] |
ZHANG C Y, CHEN G. Fast solution of neutron transport SP3 equation by reduced basis finite element method[J]. Annals of Nuclear Energy, 2018, 120: 707-714. doi: 10.1016/j.anucene.2018.06.042
|
[7] |
ELZOHERY R, ROBERTS J A. Modeling neutronic transients with Galerkin projection onto a greedy-sampled, POD subspace[J]. Annals of Nuclear Energy, 2021, 162: 108487. doi: 10.1016/j.anucene.2021.108487
|
[8] |
GONG H L, CHEN W, ZHANG C Y, et al. Fast solution of neutron diffusion problem with movement of control rods[J]. Annals of Nuclear Energy, 2020, 149: 107814. doi: 10.1016/j.anucene.2020.107814
|
[9] |
SUN Y, YANG J H, WANG Y H, et al. A POD reduced-order model for resolving the neutron transport problems of nuclear reactor[J]. Annals of Nuclear Energy, 2020, 149: 107799. doi: 10.1016/j.anucene.2020.107799
|
[10] |
HE S P, WANG M J, ZHANG J, et al. A deep-learning reduced-order model for thermal hydraulic characteristics rapid estimation of steam generators[J]. International Journal of Heat and Mass Transfer, 2022, 198: 123424. doi: 10.1016/j.ijheatmasstransfer.2022.123424
|
[11] |
LORENZI S, CAMMI A, LUZZI L, et al. A reduced order model for investigating the dynamics of the Gen-IV LFR coolant pool[J]. Applied Mathematical Modelling, 2017, 46: 263-284. doi: 10.1016/j.apm.2017.01.066
|
[12] |
MIN G Y, MA Y, WANG Y H, et al. Flow fields prediction for data-driven model of 5 × 5 fuel rod bundles based on POD-RBFNN surrogate model[J]. Nuclear Engineering and Design, 2024, 422: 113117. doi: 10.1016/j.nucengdes.2024.113117
|
[13] |
LORENZI S, CAMMI A, LUZZI L, et al. POD-Galerkin method for finite volume approximation of Navier–Stokes and RANS equations[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 311: 151-179. doi: 10.1016/j.cma.2016.08.006
|
[14] |
XIAO D H, LIN Z, FANG F X, et al. Non‐intrusive reduced‐order modeling for multiphase porous media flows using Smolyak sparse grids[J]. International Journal for Numerical Methods in Fluids, 2017, 83(2): 205-219. doi: 10.1002/fld.4263
|
[15] |
LONG T, BARNETT R, JEFFERSON-LOVEDAY R, et al. A reduced-order model for advection-dominated problems based on Radon Cumulative Distribution Transform[EB/OL]. arXiv, 2023[2024-09-04]. http://arxiv.org/abs/2304.14883.
|
[16] |
GERMAN P, RAGUSA J C, FIORINA C. Application of Multiphysics model order reduction to doppler/neutronic feedback[J]. EPJ Nuclear Sciences & Technologies, 2019, 5: 17. doi: 10.1051/epjn/2019034
|
[17] |
LIU H X, ZHANG H. A reduced order model based on ANN-POD algorithm for steady-state neutronics and thermal-hydraulics coupling problem[J]. Science and Technology of Nuclear Installations, 2023, 2023: 9385756. doi: 10.1155/2023/9385756
|
[18] |
ALSAYYARI F, TIBERGA M, PERKÓ Z, et al. A nonintrusive adaptive reduced order modeling approach for a molten salt reactor system[J]. Annals of Nuclear Energy, 2020, 141: 107321. doi: 10.1016/j.anucene.2020.107321
|
[19] |
ALSAYYARI F, TIBERGA M, PERKÓ Z, et al. Analysis of the Molten Salt Fast Reactor using reduced-order models[J]. Progress in Nuclear Energy, 2021, 140: 103909. doi: 10.1016/j.pnucene.2021.103909
|
[20] |
VERGARI L, CAMMI A, LORENZI S. Reduced order modeling for coupled thermal-hydraulics and reactor physics problems[J]. Progress in Nuclear Energy, 2021, 140: 103899. doi: 10.1016/j.pnucene.2021.103899
|
[21] |
ROWLEY C W, COLONIUS T, MURRAY R M. Model reduction for compressible flows using POD and Galerkin projection[J]. Physica D: Nonlinear Phenomena, 2004, 189(1-2): 115-129. doi: 10.1016/j.physd.2003.03.001
|
[22] |
SIROVICH L. Turbulence and the dynamics of coherent structures. III. Dynamics and scaling[J]. Quarterly of Applied Mathematics, 1987, 45(3): 583-590. doi: 10.1090/qam/910464
|
[23] |
BERKOOZ G, HOLMES P, LUMLEY J L. The proper orthogonal decomposition in the analysis of turbulent flows[J]. Annual Review of Fluid Mechanics, 1993, 25(1): 539-575. doi: 10.1146/annurev.fl.25.010193.002543
|
[24] |
ELZOHERY R, ROBERTS J. Application of model-order reduction of non-linear time-dependent neutronics via POD-Galerkin projection and matrix discrete empirical interpolation[J]. Annals of Nuclear Energy, 2022, 179: 109396. doi: 10.1016/j.anucene.2022.109396
|
[25] |
LORENZI S. An adjoint proper orthogonal decomposition method for a neutronics reduced order model[J]. Annals of Nuclear Energy, 2018, 114: 245-258. doi: 10.1016/j.anucene.2017.12.029
|
[26] |
ALSAYYARI F, PERKÓ Z, LATHOUWERS D, et al. A nonintrusive reduced order modelling approach using Proper Orthogonal Decomposition and locally adaptive sparse grids[J]. Journal of Computational Physics, 2019, 399: 108912. doi: 10.1016/j.jcp.2019.108912
|
[27] |
LI W, LI J, YAO J, et al. Mode decomposition of core dynamics transients using higher-order DMD method[J]. Nuclear Engineering and Design, 2024, 427: 113417. doi: 10.1016/j.nucengdes.2024.113417
|
[28] |
LI W H, PENG S T, LI J G, et al. Prediction of state transitions in 3D core dynamics and xenon transients based on dynamic mode decomposition[J]. Annals of Nuclear Energy, 2024, 197: 110258. doi: 10.1016/j.anucene.2023.110258
|
[29] |
XU Y F, PENG M J, CAMMI A, et al. Model order reduction of a once-through steam generator via dynamic mode decomposition[J]. Annals of Nuclear Energy, 2024, 201: 110457. doi: 10.1016/j.anucene.2024.110457
|