Advance Search
Volume 46 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
Ding Yongwang, Zhang Han, Peng Chuzhen, Wu Yingjie, Guo Jiong, Peng Wei, Zhang Ping, Li Fu. POD-RBF Based ROM Method to Calculate Temporal-Spatial Temperature Distribution under DLOFC Accident for VHTR[J]. Nuclear Power Engineering, 2025, 46(2): 107-118. doi: 10.13832/j.jnpe.2024.10.0056
Citation: Ding Yongwang, Zhang Han, Peng Chuzhen, Wu Yingjie, Guo Jiong, Peng Wei, Zhang Ping, Li Fu. POD-RBF Based ROM Method to Calculate Temporal-Spatial Temperature Distribution under DLOFC Accident for VHTR[J]. Nuclear Power Engineering, 2025, 46(2): 107-118. doi: 10.13832/j.jnpe.2024.10.0056

POD-RBF Based ROM Method to Calculate Temporal-Spatial Temperature Distribution under DLOFC Accident for VHTR

doi: 10.13832/j.jnpe.2024.10.0056
  • Received Date: 2024-10-12
  • Accepted Date: 2024-11-13
  • Rev Recd Date: 2024-11-12
  • Available Online: 2025-01-15
  • Publish Date: 2025-04-02
  • Very High-Temperature Gas-cooled Reactor (VHTR) has a wide range of applications such as hydrogen production by nuclear energy. Depressurized Loss of Forced Cooling (DLOFC) accident is one of the most serious design basis accidents of VHTR. It may cause large computational cost to analyze the DLOFC accident with large amount of different input parameters using the Full Order Model (FOM). Based on Reduced Order Model (ROM), it is of great demand and significance to calculate DLOFC accidents quickly and accurately for different schemes within the design parameters. In this paper, the FOM of VHTR is established by the code TINTE, and a ROM for fast calculation of the DLOFC accident of VHTR is realized based on Proper Orthogonal Decomposition-Radial Basis Function Interpolation (POD-RBF) method. Two methods are given to realize the transient process calculation of ROM. Method 1 equates time with input parameters such as inlet temperature; Method 2 calculates the coefficients of different time steps under the same parameter as a whole. The results show that the maximum relative error of both ROM methods is less than 1%, and the computation efficiency of ROMs is much higher than that of FOM. Furthermore, the computational efficiency of Method 2 is 40 times that of Method 1. Therefore, the ROM proposed in this paper can provide a fast calculation code for the optimization of design parameters of VHTR.

     

  • loading
  • [1]
    ZHENG Y H, STEMPNIEWICZ M M, CHEN Z P, et al. Study on the DLOFC and PLOFC accidents of the 200 MWe pebble-bed modular high temperature gas-cooled reactor with TINTE and SPECTRA codes[J]. Annals of Nuclear Energy, 2018, 120: 763-777. doi: 10.1016/j.anucene.2018.06.041
    [2]
    CHI H H, MA Y, WANG Y H. Reduced-order methods for neutron transport kinetics problem based on proper orthogonal decomposition and dynamic mode decomposition[J]. Annals of Nuclear Energy, 2024, 206: 110641. doi: 10.1016/j.anucene.2024.110641
    [3]
    WANG Y H, CHI H H, MA Y. Nodal expansion method based reduced-order model for control rod movement[J]. Annals of Nuclear Energy, 2024, 198: 110279. doi: 10.1016/j.anucene.2023.110279
    [4]
    CHI H H, WANG Y H, MA Y. Reduced-order with least square-finite difference method for neutron transport equation[J]. Annals of Nuclear Energy, 2023, 191: 109914. doi: 10.1016/j.anucene.2023.109914
    [5]
    ZHANG C Y, CHEN G. Fast solution of neutron diffusion problem by reduced basis finite element method[J]. Annals of Nuclear Energy, 2018, 111: 702-708. doi: 10.1016/j.anucene.2017.09.044
    [6]
    ZHANG C Y, CHEN G. Fast solution of neutron transport SP3 equation by reduced basis finite element method[J]. Annals of Nuclear Energy, 2018, 120: 707-714. doi: 10.1016/j.anucene.2018.06.042
    [7]
    ELZOHERY R, ROBERTS J A. Modeling neutronic transients with Galerkin projection onto a greedy-sampled, POD subspace[J]. Annals of Nuclear Energy, 2021, 162: 108487. doi: 10.1016/j.anucene.2021.108487
    [8]
    GONG H L, CHEN W, ZHANG C Y, et al. Fast solution of neutron diffusion problem with movement of control rods[J]. Annals of Nuclear Energy, 2020, 149: 107814. doi: 10.1016/j.anucene.2020.107814
    [9]
    SUN Y, YANG J H, WANG Y H, et al. A POD reduced-order model for resolving the neutron transport problems of nuclear reactor[J]. Annals of Nuclear Energy, 2020, 149: 107799. doi: 10.1016/j.anucene.2020.107799
    [10]
    HE S P, WANG M J, ZHANG J, et al. A deep-learning reduced-order model for thermal hydraulic characteristics rapid estimation of steam generators[J]. International Journal of Heat and Mass Transfer, 2022, 198: 123424. doi: 10.1016/j.ijheatmasstransfer.2022.123424
    [11]
    LORENZI S, CAMMI A, LUZZI L, et al. A reduced order model for investigating the dynamics of the Gen-IV LFR coolant pool[J]. Applied Mathematical Modelling, 2017, 46: 263-284. doi: 10.1016/j.apm.2017.01.066
    [12]
    MIN G Y, MA Y, WANG Y H, et al. Flow fields prediction for data-driven model of 5 × 5 fuel rod bundles based on POD-RBFNN surrogate model[J]. Nuclear Engineering and Design, 2024, 422: 113117. doi: 10.1016/j.nucengdes.2024.113117
    [13]
    LORENZI S, CAMMI A, LUZZI L, et al. POD-Galerkin method for finite volume approximation of Navier–Stokes and RANS equations[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 311: 151-179. doi: 10.1016/j.cma.2016.08.006
    [14]
    XIAO D H, LIN Z, FANG F X, et al. Non‐intrusive reduced‐order modeling for multiphase porous media flows using Smolyak sparse grids[J]. International Journal for Numerical Methods in Fluids, 2017, 83(2): 205-219. doi: 10.1002/fld.4263
    [15]
    LONG T, BARNETT R, JEFFERSON-LOVEDAY R, et al. A reduced-order model for advection-dominated problems based on Radon Cumulative Distribution Transform[EB/OL]. arXiv, 2023[2024-09-04]. http://arxiv.org/abs/2304.14883.
    [16]
    GERMAN P, RAGUSA J C, FIORINA C. Application of Multiphysics model order reduction to doppler/neutronic feedback[J]. EPJ Nuclear Sciences & Technologies, 2019, 5: 17. doi: 10.1051/epjn/2019034
    [17]
    LIU H X, ZHANG H. A reduced order model based on ANN-POD algorithm for steady-state neutronics and thermal-hydraulics coupling problem[J]. Science and Technology of Nuclear Installations, 2023, 2023: 9385756. doi: 10.1155/2023/9385756
    [18]
    ALSAYYARI F, TIBERGA M, PERKÓ Z, et al. A nonintrusive adaptive reduced order modeling approach for a molten salt reactor system[J]. Annals of Nuclear Energy, 2020, 141: 107321. doi: 10.1016/j.anucene.2020.107321
    [19]
    ALSAYYARI F, TIBERGA M, PERKÓ Z, et al. Analysis of the Molten Salt Fast Reactor using reduced-order models[J]. Progress in Nuclear Energy, 2021, 140: 103909. doi: 10.1016/j.pnucene.2021.103909
    [20]
    VERGARI L, CAMMI A, LORENZI S. Reduced order modeling for coupled thermal-hydraulics and reactor physics problems[J]. Progress in Nuclear Energy, 2021, 140: 103899. doi: 10.1016/j.pnucene.2021.103899
    [21]
    ROWLEY C W, COLONIUS T, MURRAY R M. Model reduction for compressible flows using POD and Galerkin projection[J]. Physica D: Nonlinear Phenomena, 2004, 189(1-2): 115-129. doi: 10.1016/j.physd.2003.03.001
    [22]
    SIROVICH L. Turbulence and the dynamics of coherent structures. III. Dynamics and scaling[J]. Quarterly of Applied Mathematics, 1987, 45(3): 583-590. doi: 10.1090/qam/910464
    [23]
    BERKOOZ G, HOLMES P, LUMLEY J L. The proper orthogonal decomposition in the analysis of turbulent flows[J]. Annual Review of Fluid Mechanics, 1993, 25(1): 539-575. doi: 10.1146/annurev.fl.25.010193.002543
    [24]
    ELZOHERY R, ROBERTS J. Application of model-order reduction of non-linear time-dependent neutronics via POD-Galerkin projection and matrix discrete empirical interpolation[J]. Annals of Nuclear Energy, 2022, 179: 109396. doi: 10.1016/j.anucene.2022.109396
    [25]
    LORENZI S. An adjoint proper orthogonal decomposition method for a neutronics reduced order model[J]. Annals of Nuclear Energy, 2018, 114: 245-258. doi: 10.1016/j.anucene.2017.12.029
    [26]
    ALSAYYARI F, PERKÓ Z, LATHOUWERS D, et al. A nonintrusive reduced order modelling approach using Proper Orthogonal Decomposition and locally adaptive sparse grids[J]. Journal of Computational Physics, 2019, 399: 108912. doi: 10.1016/j.jcp.2019.108912
    [27]
    LI W, LI J, YAO J, et al. Mode decomposition of core dynamics transients using higher-order DMD method[J]. Nuclear Engineering and Design, 2024, 427: 113417. doi: 10.1016/j.nucengdes.2024.113417
    [28]
    LI W H, PENG S T, LI J G, et al. Prediction of state transitions in 3D core dynamics and xenon transients based on dynamic mode decomposition[J]. Annals of Nuclear Energy, 2024, 197: 110258. doi: 10.1016/j.anucene.2023.110258
    [29]
    XU Y F, PENG M J, CAMMI A, et al. Model order reduction of a once-through steam generator via dynamic mode decomposition[J]. Annals of Nuclear Energy, 2024, 201: 110457. doi: 10.1016/j.anucene.2024.110457
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (50) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return