Citation: | Bai Xiaoming, Cao Guochang, Cao Hongsheng, Yu Xinyang, Xiong Furui, Jiang He. Research and Application of Transient Satistical Method for Nuclear Power Plant[J]. Nuclear Power Engineering, 2024, 45(S1): 1-5. doi: 10.13832/j.jnpe.2024.S1.0001 |
[1] |
文静,房永刚,路燕,等. 核安全设备疲劳分析方法与步骤[J]. 原子能科学技术,2014, 48(1): 121-126.
|
[2] |
陈明亚,余伟炜,薛飞,等. 基于三维应力分量的管道热疲劳监测数据分析[J]. 压力容器,2020, 37(1): 20-26,41.
|
[3] |
赵传礼,施少波,栾兴峰,等. 稳压器波动管疲劳状态分析及对策[J]. 核动力工程,2022, 43(S1): 11-15.
|
[4] |
崔怀明,唐传宝,白晓明,等. 华龙一号疲劳监测和瞬态统计系统研制[J]. 核动力工程,2023, 44(5): 80-84.
|
[5] |
姜赫,石文翔,曹国畅,等. 瞬态监督和处理方法在核电厂运行许可证延续中的应用[J]. 核动力工程,2022, 43(S1): 40-43.
|
[6] |
阮良成,俞忠德,陈忠武,等. 秦山第二核电厂2号机组汽轮机误快速降负荷瞬态分析[J]. 核动力工程,2007, 28(2): 82-86.
|
[7] |
刘余,任春明,汤琪芬,等. 核电厂运行瞬态分析软件PANTO的研发[J]. 核技术,2017, 40(5): 050604.
|
[8] |
KWON K C. HMM-based transient identification in dynamic process[J]. Transactions on Control, Automation and Systems Engineering, 2000, 2(1): 40-46.
|
[9] |
KWON K C, KIM J H. Accident identification in nuclear power plants using hidden Markov models[J]. Engineering Applications of Artificial Intelligence, 1999, 12(4): 491-501. doi: 10.1016/S0952-1976(99)00011-1
|
[10] |
KWON K C, KIM J H, SEONG P H. Hidden Markov model-based real-time transient identifications in nuclear power plants[J]. International Journal of Intelligent Systems, 2002, 17(8): 791-811. doi: 10.1002/int.10050
|
[11] |
GOTTLIEB C, ARZHANOV V, GUDOWSKI W, et al. Feasibility study on transient identification in nuclear power plants using support vector machines[J]. Nuclear Technology, 2006, 155(1): 67-77. doi: 10.13182/NT06-A3746
|
[12] |
MO K, LEE S J, SEONG P H. A dynamic neural network aggregation model for transient diagnosis in nuclear power plants[J]. Progress in Nuclear Energy, 2007, 49(3): 262-272. doi: 10.1016/j.pnucene.2007.01.002
|
[13] |
MEDEIROS J A C C, SCHIRRU R. Identification of nuclear power plant transients using the particle swarm optimization algorithm[J]. Annals of Nuclear Energy, 2008, 35(4): 576-582. doi: 10.1016/j.anucene.2007.08.013
|
[14] |
DE A MOL A, MARTINEZ A S, SCHIRRU R. A neural model for transient identification in dynamic processes with “don’t know” response[J]. Annals of Nuclear Energy, 2003, 30(13): 1365-1381. doi: 10.1016/S0306-4549(03)00072-0
|
[15] |
MOL A C A, ALMEIDA J C S, PEREIRA C M N A, et al. Neural and genetic-based approaches to nuclear transient identification including ‘don’t know’ response[J]. Progress in Nuclear Energy, 2006, 48(3): 268-282. doi: 10.1016/j.pnucene.2005.07.002
|
[16] |
常远,黄晓津,李春文,等. 基于模糊距离的核电厂瞬态分段识别方法[J]. 核动力工程,2014, 35(1): 106-109.
|
[17] |
常远,郝轶,黄晓津,等. 基于模糊熵的核电站瞬态识别方法[J]. 原子能科学技术,2014, 48(9): 1640-1645.
|
[18] |
GRUBBS F E. Sample criteria for testing outlying observations[J]. The Annals of Mathematical Statistics, 1950, 21(1): 27-58. doi: 10.1214/aoms/1177729885
|
[19] |
白晓明,郑连纲,艾红雷,等. 基于趋势滤波的瞬态曲线协同分段线性化方法研究[J]. 核动力工程,2018, 39(2): 72-75.
|
[20] |
李旭芳,段春林,张冬波,等. 遥测数据时间序列滑动窗口动态分割技术[J]. 飞行器测控学报,2015, 34(4): 345-349.
|
[21] |
SAKOE H, CHIBA S. Dynamic programming algorithm optimization for spoken word recognition[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1978, 26(1): 43-49. doi: 10.1109/TASSP.1978.1163055
|