Citation: | Liu Zhenhai, Zhang Tao, Qi Feipeng, Zhang Kun, Li Yuanming, Zhou Yi, Li Wenjie. Research on Fast Prediction Method of Fuel Rod Steady-state Temperature Distribution Based on PINN[J]. Nuclear Power Engineering, 2024, 45(S1): 39-44. doi: 10.13832/j.jnpe.2024.S1.0039 |
[1] |
洪亮,金鑫,刘虓瀚,等. 机器学习算法在燃料棒温度性能预测中的应用[J]. 深圳大学学报: 理工版,2022, 39(5): 515-520.
|
[2] |
CHE Y F, YURKO J, SEURIN P, et al. Machine learning-assisted surrogate construction for full-core fuel performance analysis[J]. Annals of Nuclear Energy, 2022, 168: 108905. doi: 10.1016/j.anucene.2021.108905
|
[3] |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045
|
[4] |
BERNARD L C, JACOUD J L, VESCO P. An efficient model for the analysis of fission gas release[J]. Journal of Nuclear Materials, 2002, 302(2-3): 125-134. doi: 10.1016/S0022-3115(02)00793-6
|
[5] |
LUSCHER W G, GEELHOOD K J, PORTER I E. Material property correlations: comparisons between FRAPCON-4.0, FRAPTRAN-2.0, and MATPRO: PNNL-19417 Rev. 2[R]. Richland, Washington: Pacific Northwest National Laboratory, 2015.
|
[6] |
阎昌琪. 核反应堆工程[M]. 黑龙江: 哈尔滨工程大学出版社,2004: 160.
|