Citation: | Wang Deying, Hu Wei, Wu Tong, Zhu Kerun, Zhang Liang, Yang Meng, Du Min, Zhang Ran. Research on CANDU Channel Power Prediction Based on Stacking Ensemble Learning[J]. Nuclear Power Engineering, 2024, 45(S1): 72-77. doi: 10.13832/j.jnpe.2024.S1.0072 |
[1] |
JEONG C J, CHO N Z. Power mapping in a Canada deuterium uranium reactor using Kalman filtering technique[J]. Journal of Nuclear Science and Technology, 2000, 37(9): 758-768. doi: 10.1080/18811248.2000.9714954
|
[2] |
MENESES A, DE LIMA A, SCHIRRU R. Artificial intelligence methods applied to the in-core nuclear fuel management optimization[M]//Nuclear Power. InTech, 2010,123-145.
|
[3] |
ORTIZ J J, REQUENA I. Using a multi-state recurrent neural network to optimize loading patterns in BWRs[J]. Annals of Nuclear Energy, 2004, 31(7): 789-803. doi: 10.1016/j.anucene.2003.11.001
|
[4] |
DO B, ROH G, CHOI H. Optimal refueling pattern search for a CANDU reactor using a genetic algorithm[C]//International Congress on Advances in Nuclear Power Plants ICAPP-2006. Reno: ICAPP, 2006: 2422-2431.
|
[5] |
夏虹,李彬,刘建新. 基于RBF神经网络的压水堆堆芯三维功率分布方法研究[J]. 原子能科学技术,2014, 48(4): 698-702. doi: 10.7538/yzk.2014.48.04.0698
|
[6] |
霍小东,谢仲生. 遗传算法在CANDU堆燃料管理中应用的研究[J]. 核动力工程,2005, 26(6): 539-543. doi: 10.3969/j.issn.0258-0926.2005.06.003
|
[7] |
高雪东. CANDU核反应堆换料算法研究[D]. 上海: 上海交通大学,2007.
|
[8] |
刘志宾. 基于中子等效均匀扩散理论的CANDU堆堆芯功率分布计算研究[D]. 北京: 华北电力大学(北京),2017.
|
[9] |
CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 785-794.
|
[10] |
BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. doi: 10.1023/A:1010933404324
|
[11] |
CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
|
[12] |
邓乃扬,田英杰. 支持向量机: 理论、算法与拓展[M]. 北京: 科学出版社,2009: 5-32.
|
[13] |
WERBOS P J. Beyond regression: new tools for prediction and analysis in the behavioral sciences[D]. Cambridge: Harvard University, 1974.
|
[14] |
RUMELHART D E, HINTON G E, WILLIAMS R J. Learning internal representations by error propagation[J]. Biometrika, 1986, 71: 599-607.
|
[15] |
RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. doi: 10.1038/323533a0
|
[16] |
周志华. 机器学习[M]. 北京: 清华大学出版社,2016:126-131.
|