Advance Search
Volume 45 Issue S1
Jun.  2024
Turn off MathJax
Article Contents
Wang Deying, Hu Wei, Wu Tong, Zhu Kerun, Zhang Liang, Yang Meng, Du Min, Zhang Ran. Research on CANDU Channel Power Prediction Based on Stacking Ensemble Learning[J]. Nuclear Power Engineering, 2024, 45(S1): 72-77. doi: 10.13832/j.jnpe.2024.S1.0072
Citation: Wang Deying, Hu Wei, Wu Tong, Zhu Kerun, Zhang Liang, Yang Meng, Du Min, Zhang Ran. Research on CANDU Channel Power Prediction Based on Stacking Ensemble Learning[J]. Nuclear Power Engineering, 2024, 45(S1): 72-77. doi: 10.13832/j.jnpe.2024.S1.0072

Research on CANDU Channel Power Prediction Based on Stacking Ensemble Learning

doi: 10.13832/j.jnpe.2024.S1.0072
  • Received Date: 2024-01-01
  • Rev Recd Date: 2024-03-01
  • Publish Date: 2024-06-15
  • The accuracy of CANDU reactor channel power prediction directly affects the quality of the refueling plan, which in turn affects the economy and safety of reactor operation. To improve the prediction effect, it is advocated to introduce artificial intelligence algorithms to mine the potential variable relationship from historical operation data. After data cleaning and feature selection, a feature termed "Refueling Impact Index" is designed. With XGBoost, random forest, support vector regression, and BP neural network as primary learners and support vector regression as secondary learners, an ensemble learning model based on Stacking is constructed. Through comparative analysis, the Stacking ensemble learning model has achieved a "secondary improvement" in prediction effect on the basis of a single learning model. Moreover, the Stacking ensemble learning model has significantly better effect than the traditional RFSP methods in terms of average prediction deviation rate, maximum prediction deviation rate, and prediction deviation rate variance. This enables physical engineers to obtain more accurate power feedback in the process of formulating refueling plans, scientifically select refueling channels, and thereby improve economic benefits while ensuring reactor safety.

     

  • loading
  • [1]
    JEONG C J, CHO N Z. Power mapping in a Canada deuterium uranium reactor using Kalman filtering technique[J]. Journal of Nuclear Science and Technology, 2000, 37(9): 758-768. doi: 10.1080/18811248.2000.9714954
    [2]
    MENESES A, DE LIMA A, SCHIRRU R. Artificial intelligence methods applied to the in-core nuclear fuel management optimization[M]//Nuclear Power. InTech, 2010,123-145.
    [3]
    ORTIZ J J, REQUENA I. Using a multi-state recurrent neural network to optimize loading patterns in BWRs[J]. Annals of Nuclear Energy, 2004, 31(7): 789-803. doi: 10.1016/j.anucene.2003.11.001
    [4]
    DO B, ROH G, CHOI H. Optimal refueling pattern search for a CANDU reactor using a genetic algorithm[C]//International Congress on Advances in Nuclear Power Plants ICAPP-2006. Reno: ICAPP, 2006: 2422-2431.
    [5]
    夏虹,李彬,刘建新. 基于RBF神经网络的压水堆堆芯三维功率分布方法研究[J]. 原子能科学技术,2014, 48(4): 698-702. doi: 10.7538/yzk.2014.48.04.0698
    [6]
    霍小东,谢仲生. 遗传算法在CANDU堆燃料管理中应用的研究[J]. 核动力工程,2005, 26(6): 539-543. doi: 10.3969/j.issn.0258-0926.2005.06.003
    [7]
    高雪东. CANDU核反应堆换料算法研究[D]. 上海: 上海交通大学,2007.
    [8]
    刘志宾. 基于中子等效均匀扩散理论的CANDU堆堆芯功率分布计算研究[D]. 北京: 华北电力大学(北京),2017.
    [9]
    CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 785-794.
    [10]
    BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. doi: 10.1023/A:1010933404324
    [11]
    CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
    [12]
    邓乃扬,田英杰. 支持向量机: 理论、算法与拓展[M]. 北京: 科学出版社,2009: 5-32.
    [13]
    WERBOS P J. Beyond regression: new tools for prediction and analysis in the behavioral sciences[D]. Cambridge: Harvard University, 1974.
    [14]
    RUMELHART D E, HINTON G E, WILLIAMS R J. Learning internal representations by error propagation[J]. Biometrika, 1986, 71: 599-607.
    [15]
    RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. doi: 10.1038/323533a0
    [16]
    周志华. 机器学习[M]. 北京: 清华大学出版社,2016:126-131.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (44) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return