Citation: | Wang Yuzhou, Zhang Qiang, Ma Xianfeng, Zhu Fei, Liao Jingjing. Study on Thermal Conductivity of Accident Tolerant Fuels using Laser-based Thermoreflectance Technology[J]. Nuclear Power Engineering, 2024, 45(S1): 96-102. doi: 10.13832/j.jnpe.2024.S1.0096 |
[1] |
MALA M, MIKLOS M. Nondestructive testing of nuclear reactor components integrity[C]//Proceedings of International Conference on WWER Fuel Performance, Modelling and Experimental Support. Bulgaria: Helena Resort, 2011.
|
[2] |
ZINKLE S J, TERRANI K A, GEHIN J C, et al. Accident tolerant fuels for LWRs: a perspective[J]. Journal of Nuclear Materials, 2014, 448(1-3): 374-379. doi: 10.1016/j.jnucmat.2013.12.005
|
[3] |
焦拥军,于俊崇,周毅,等. 商用压水堆核燃料研发进展与应用展望[J]. 核动力工程,2022, 43(6): 1-7.
|
[4] |
ZHOU W, ZHOU W Z. Enhanced thermal conductivity accident tolerant fuels for improved reactor safety – a comprehensive review[J]. Annals of Nuclear Energy, 2018, 119: 66-86. doi: 10.1016/j.anucene.2018.04.040
|
[5] |
程亮,张鹏程. 事故容错热导率增强型UO2核燃料的研究进展[J]. 材料导报,2019, 33(11): 1787-1792. doi: 10.11896/cldb.18050107
|
[6] |
WHITE J T, TRAVIS A W, DUNWOODY J T, et al. Fabrication and thermophysical property characterization of UN/U3Si2 composite fuel forms[J]. Journal of Nuclear Materials, 2017, 495: 463-474. doi: 10.1016/j.jnucmat.2017.08.041
|
[7] |
陆永洪,贾代坤,粟丹科,等. 真空烧结U3Si2燃料芯块的微观组织与导热性能[J]. 粉末冶金材料科学与工程,2022, 27(4): 436-441.
|
[8] |
KREJČÍ J, KABÁTOVÁ J, MANOCH F, et al. Deve lopment and testing of multicomponent fuel cladding with enhanced accidental performance[J]. Nuclear Engineering and Technology, 2020, 52(3): 597-609. doi: 10.1016/j.net.2019.08.015
|
[9] |
MARUYAMA T, HARAYAMA M. Neutron irradiation effect on the thermal conductivity and dimensional change of graphite materials[J]. Journal of Nuclear Materials, 1992, 195(1-2): 44-50. doi: 10.1016/0022-3115(92)90362-O
|
[10] |
KHAFIZOV M, CHAUHAN V, WANG Y, et al. Investigation of thermal transport in composites and ion beam irradiated materials for nuclear energy applications[J]. Journal of Materials Research, 2017, 32(1): 204-216. doi: 10.1557/jmr.2016.421
|
[11] |
PAVLOV T R, MIDDLEMAS S C, MILLER B D, et al. Understanding the local thermal conductivity evolution of neutron irradiated U3Si2 dispersion fuel via state-of-the-art thermo-reflectance measurements[J]. Journal of Nuclear Materials, 2021, 557: 153280. doi: 10.1016/j.jnucmat.2021.153280
|
[12] |
FAVALORO T, BAHK J H, SHAKOURI A. Characterization of the temperature dependence of the thermoreflectance coefficient for conductive thin films[J]. Review of Scientific Instruments, 2015, 86(2): 024903. doi: 10.1063/1.4907354
|
[13] |
HURLEY D H, SCHLEY R S, KHAFIZOV M, et al. Local measurement of thermal conductivity and diffusivity[J]. Review of Scientific Instruments, 2015, 86(12): 123901. doi: 10.1063/1.4936213
|
[14] |
WANG Y Z, CHAUHAN V, HUA Z L, et al. A square pulse thermoreflectance technique for the measurement of thermal properties[J]. International Journal of Thermophysics, 2022, 43(4): 53. doi: 10.1007/s10765-021-02949-z
|
[15] |
ZHAO D L, QIAN X, GU X K, et al. Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials[J]. Journal of Electronic Packaging, 2016, 138(4): 040802. doi: 10.1115/1.4034605
|
[16] |
RIYAD M F, CHAUHAN V, KHAFIZOV M. Implementation of a multilayer model for measurement of thermal conductivity in ion beam irradiated samples using a modulated thermoreflectance approach[J]. Journal of Nuclear Materials, 2018, 509: 134-144. doi: 10.1016/j.jnucmat.2018.06.013
|
[17] |
SCHMIDT A J, CHEAITO R, CHIESA M. A frequency-domain thermoreflectance method for the characterization of thermal properties[J]. Review of Scientific Instruments, 2009, 80(9): 094901. doi: 10.1063/1.3212673
|
[18] |
CAHILL D G. Analysis of heat flow in layered structures for time-domain thermoreflectance[J]. Review of Scientific Instruments, 2004, 75(12): 5119-5122. doi: 10.1063/1.1819431
|
[19] |
RONCHI C, SHEINDLIN M, STAICU D, et al. Effect of burn-up on the thermal conductivity of uranium dioxide up to 100.000 MWdt−1[J]. Journal of Nuclear Materials, 2004, 327(1): 58-76. doi: 10.1016/j.jnucmat.2004.01.018
|
[20] |
KHAFIZOV M, RIYAD M F, WANG Y Z, et al. Combining mesoscale thermal transport and x-ray diffraction measurements to characterize early-stage evolution of irradiation-induced defects in ceramics[J]. Acta Materialia, 2020, 193: 61-70. doi: 10.1016/j.actamat.2020.04.018
|
[21] |
GÜNAY S D. Swelling mechanisms of UO2 lattices with defect ingrowths[J]. PLoS One, 2015, 10(8): e0134500. doi: 10.1371/journal.pone.0134500
|
[22] |
LIU X Y, COOPER M W D, MCCLELLAN K J, et al. Molecular dynamics simulation of thermal transport in UO2 containing uranium, oxygen, and fission-product defects[J]. Physical Review Applied, 2016, 6(4): 044015. doi: 10.1103/PhysRevApplied.6.044015
|
[23] |
POWERS J J, WIRTH B D. A review of TRISO fuel performance models[J]. Journal of Nuclear Materials, 2010, 405(1): 74-82. doi: 10.1016/j.jnucmat.2010.07.030
|
[24] |
WANG Y Z, HUA Z H, SCHLEY R, et al. Thermal properties measurement of TRISO particle coatings from room temperature to 900 ℃ using laser-based thermoreflectance methods[J]. Journal of Nuclear Materials, 2022, 565: 153721. doi: 10.1016/j.jnucmat.2022.153721
|
[25] |
PAVLOV T R, LESTAK M, WENMAN M R, et al. Examining the thermal properties of unirradiated nuclear grade graphite between 750 and 2500 K[J]. Journal of Nuclear Materials, 2020, 538: 152176. doi: 10.1016/j.jnucmat.2020.152176
|
[26] |
LÓPEZ-HONORATO E, CHIRITESCU C, XIAO P, et al. Thermal conductivity mapping of pyrolytic carbon and silicon carbide coatings on simulated fuel particles by time-domain thermoreflectance[J]. Journal of Nuclear Materials, 2008, 378(1): 35-39. doi: 10.1016/j.jnucmat.2008.04.007
|
[27] |
SNEAD L L, NOZAWA T, KATOH Y, et al. Handbook of SiC properties for fuel performance modeling[J]. Journal of Nuclear Materials, 2007, 371(1-3): 329-377. doi: 10.1016/j.jnucmat.2007.05.016
|
[28] |
BALANDIN A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials, 2011, 10(8): 569-581. doi: 10.1038/nmat3064
|
[29] |
LÓPEZ-HONORATO E, MEADOWS P J, XIAO P. Fluidized bed chemical vapor deposition of pyrolytic carbon–I. Effect of deposition conditions on microstructure[J]. Carbon, 2009, 47(2): 396-410. doi: 10.1016/j.carbon.2008.10.023
|
[30] |
张建辉,夏文莉. 沉积条件对低温各向同性热解炭微观结构的影响[J]. 中国有色金属学报,2015, 25(1): 165-170.
|