Citation: | Zhang Ruixiao, He Yanan, Wu Yingwei, Tian Wenxi, Qiu Suizheng, Su Guanghui. Development and Application of a Mechanical Model for Multilayer Anisotropic Cladding[J]. Nuclear Power Engineering, 2024, 45(S1): 110-116. doi: 10.13832/j.jnpe.2024.S1.0110 |
[1] |
TERRANI K A. Accident tolerant fuel cladding development: promise, status, and challenges[J]. Journal of Nuclear Materials, 2018, 501: 13-30.
|
[2] |
KATOH Y, OZAWA K, SHIH C, et al. Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: properties and irradiation effects[J]. Journal of Nuclear Materials, 2014, 448(1-3): 448-476.
|
[3] |
LEE Y, KAZIMI M S. A structural model for multi-layered ceramic cylinders and its application to silicon carbide cladding of light water reactor fuel[J]. Journal of Nuclear Materials, 2015, 458: 87-105.
|
[4] |
KATOH Y, SNEAD L L. Silicon carbide and its composites for nuclear applications - Historical overview[J]. Journal of Nuclear Materials, 2019, 526: 151849.
|
[5] |
SNEAD L L, NOZAWA T, KATOH Y, et al. Handbook of SiC properties for fuel performance modeling[J]. Journal of Nuclear Materials, 2007, 371(1-3): 329-377.
|
[6] |
KATOH Y, NOZAWA T, SNEAD L L, et al. Stability of SiC and its composites at high neutron fluence[J]. Journal of Nuclear Materials, 2011, 417(1-3): 400-405.
|
[7] |
SUKJAI Y. Silicon carbide performance as cladding for advanced uranium and thorium fuels for light water reactors[D]. Cambridge: Massachusetts Institute of Technology, 2014.
|
[8] |
BEN-BELGACEM M, RICHET V, TERRANI K A, et al. Thermo-mechanical analysis of LWR SiC/SiC composite cladding[J]. Journal of Nuclear Materials, 2014, 447(1-3): 125-142.
|
[9] |
DENG Y B, SHIRVAN K, WU Y W, et al. Probabilistic view of SiC/SiC composite cladding failure based on full core thermo-mechanical response[J]. Journal of Nuclear Materials, 2018, 507: 24-37.
|
[10] |
RHO H, LEE Y. Development of a 2D axisymmetric SiC cladding mechanical model and its applications for steady-state and LBLOCA analysis[J]. Journal of Nuclear Materials, 2022, 558: 153311.
|
[11] |
邓阳斌,贺亚男,巫英伟,等. 多层结构包壳和非刚体芯块力学建模及应用[J]. 原子能科学技术,2018, 52(7): 1308-1315. doi: 10.7538/yzk.2017.youxian.0611
|
[12] |
DENG Y B, WU Y W, QIU B W, et al. Development of a new Pellet-Clad Mechanical Interaction (PCMI) model and its application in ATFs[J]. Annals of Nuclear Energy, 2017, 104: 146-156.
|
[13] |
HE Y N, SHIRVAN K, WU Y W, et al. Fuel performance optimization of U3Si2-SiC design during normal, power ramp and RIA conditions[J]. Nuclear Engineering and Design, 2019, 353: 110276.
|
[1] | Jin Desheng, Yan Yalun, Cheng Yanhua, Fu Xuefeng, Peng Zhenxun, Liao Yehong, Mao Yulong. Study on Bubble Behavior Mechanism of Saturated Pool Boiling on SiC Cladding Material Surface under Atmospheric Pressure[J]. Nuclear Power Engineering, 2024, 45(S1): 167-174. doi: 10.13832/j.jnpe.2024.S1.0167 |
[2] | Wang Zefeng, Deng Jian, Qiu Zhifang, Chen Xi, Wang Xiaoyu, Chen Jianda, Xiong Jinbiao. Experimental Investigation on Minimum Film Boiling Temperature during Quenching of FeCrAl[J]. Nuclear Power Engineering, 2024, 45(4): 267-273. doi: 10.13832/j.jnpe.2024.04.0267 |
[3] | Wang Zeji, Guo Zhangpeng, Zhu Aobo, Ouyang Xiaoping, Niu Fenglei. Preliminary Analytical Study of the Effect of Accident Tolerant Fuel on Fuel Rod Performance under LOCA Condition[J]. Nuclear Power Engineering, 2024, 45(5): 99-107. doi: 10.13832/j.jnpe.2024.05.0099 |
[4] | Xiong Yiran, Ma Zehua, Liang Ren, Lin Zhikang, Ju Zhongyun, Peng Zhenxun. Safety Analysis on Accident-tolerant Fuel during LBLOCA Based on LOCUST Code[J]. Nuclear Power Engineering, 2024, 45(S1): 138-144. doi: 10.13832/j.jnpe.2024.S1.0138 |
[5] | Li Yunzhao, Qin Junwei, Xia Fan, Wu Hongchun, Cao Liangzhi. Anisotropic SP3 Two-Step Method for Reactor Cores with Strong Absorbers[J]. Nuclear Power Engineering, 2023, 44(6): 9-15. doi: 10.13832/j.jnpe.2023.06.0009 |
[6] | Ma Zhengqing, Pang Hua, Zhang Kun, Tang Changbing, Wu Zhouzhi, Yan Feng, Xing Shuo. Three Dimensionnal Simulation Investigation of Wedged Pellet-Clad Interaction Problem in Fuel Rod[J]. Nuclear Power Engineering, 2023, 44(S2): 6-10. doi: 10.13832/j.jnpe.2023.S2.0006 |
[7] | Wen Qinglong, Zeng Xiehu, Du Qiang, Chen Zhiqiang, Zhang Ruiqian, Du Peinan. Experimental Study on Saturated Pool Boiling Bubble Behavior of ATF Chromium Coated Zirconium Alloy Cladding at Atmospheric Pressure[J]. Nuclear Power Engineering, 2022, 43(5): 34-42. doi: 10.13832/j.jnpe.2022.05.0034 |
[8] | Yin Chunyu, Liu Rong, Jiao Yongjun, Qiu Chenjie, Liu Zhenhai, Qiu Bowen, Gao Shixin, Xing Shuo. Fuel Performance Analysis of Light Water Reactor Based on the Combination of U3Si2 Fuel and Two-Layer SiC Cladding Based on Multi-Physical Field Coupling[J]. Nuclear Power Engineering, 2022, 43(1): 102-109. doi: 10.13832/j.jnpe.2022.01.0102 |
[9] | Liu Shichao, Pang Hua, Zhou Yi, Li Yuanming, He Liang, Zhang Kun, Tu Teng. Thermal Shock Behavior Analysis of SiC Composite Cladding[J]. Nuclear Power Engineering, 2022, 43(3): 107-112. doi: 10.13832/j.jnpe.2022.03.0107 |
[10] | Xiao Xiang, Wu Jun, Chen Yixue, Yang Tongrui, Zhu Chenglin, Li Shuo. Investigation on Resonance Self-Shielding Calculation for PWR Cladding Materials Based on Equivalence Theory[J]. Nuclear Power Engineering, 2021, 42(1): 65-69. doi: 10.13832/j.jnpe.2021.01.0065 |
[11] | Wan Haiyi, Wang Hui, Zha Wusheng, An Xuguang, Kong Qingquan, Chen Xiuli. Research Progress of FeCrAl Cladding Materials Strengthened by Particles for ATF[J]. Nuclear Power Engineering, 2020, 41(6): 80-84. |
[12] | Wang Zefeng, Ma Yunfei, Zhong Mingjun, Xiong Jinbiao, Yang Yanhua. Experimental Investigation on Impact Behavior and Leidenfrost Phenomenon of Droplets on ATF Cladding Surfaces[J]. Nuclear Power Engineering, 2020, 41(3): 35-40. doi: 10.13832/j.jnpe.2020.03.0035 |
[13] | Li Rui, Liu Tong. Study on Process and Properties of Pulse Laser Prepared Cr Coating for Accident Tolerant Fuel Claddings[J]. Nuclear Power Engineering, 2019, 40(1): 74-77. doi: 10.13832/j.jnpe.2019.01.0074 |
[14] | Li Rui, Liu Tong. Study on Properties of FeCrAl Coated ATF Zirconium Cladding Prepared by Plasma Spry[J]. Nuclear Power Engineering, 2019, 40(4): 65-69. |
[15] | Gao Shixin, Li Wenjie, Chen Ping, Jiao Yongjun, Zhou Yi, HE Liang. Study on Irradiation Behavior of Fuel Rods with FeCrAl Cladding[J]. Nuclear Power Engineering, 2017, 38(5): 175-177. doi: 10.13832/j.jnpe.2017.05.0175 |
[16] | Xu Duoting, Liu Tong, Ren Qisen, Huang Heng, Wu Hailong. Thermal Property Analysis of Accident Tolerance Fuel Pellet[J]. Nuclear Power Engineering, 2016, 37(2): 82-86. doi: 10.13832/j.jnpe.2016.02.0082 |
[17] | Li Wenjie, Gao Shixin, Chen Ping, Jiao Yongjun, Chen Bingde. In-pile Application and Preliminary Performance Analysis of Silicon Carbide Composite Cladding[J]. Nuclear Power Engineering, 2016, 37(1): 148-151. doi: 10.13832/j.jnpe.2016.01.0148 |
[18] | Liu Lili, Yu Hongxing, Chen Liang, Deng Jian, Zhang Ming. Failure Criterion of Cladding Oxide Layer in Dissolution Mechanism[J]. Nuclear Power Engineering, 2015, 36(S2): 116-121. doi: 10.13832/j.jnpe.2015.S2.0116 |
[19] | Ni Dongyang, Li Mancang, Wu Wenbin, Sun Wei. Neutron Penalty and Advantage Analysis of Candidate Accident-Tolerant Cladding Materials in PWRs[J]. Nuclear Power Engineering, 2015, 36(S2): 14-16. doi: 10.13832/j.jnpe.2015.S2.0014 |
[20] | WANG Pengfei, ZHAO Wenjin, YAN Meng. Review of Investigations on Anisotropic Creep Behavior of Zr Alloy Cladding[J]. Nuclear Power Engineering, 2012, 33(S2): 28-34. |
1. | 刘华年,王静,李超群. 基于多重网格法的多晶各向异性轴承钢热弹流润滑耦合算法. 摩擦学学报(中英文). 2025(01): 58-66 . ![]() |