Advance Search
Volume 45 Issue S1
Jun.  2024
Turn off MathJax
Article Contents
Wang Yuhui, Liu Chao, Hu Yong, Peng Dequan. Effect of pH on High-temperature Electrochemical Corrosion Behavior of AlCrNbSiTi High Entropy Alloy Coatings on Zr-Sn-Nb Alloy[J]. Nuclear Power Engineering, 2024, 45(S1): 123-129. doi: 10.13832/j.jnpe.2024.S1.0123
Citation: Wang Yuhui, Liu Chao, Hu Yong, Peng Dequan. Effect of pH on High-temperature Electrochemical Corrosion Behavior of AlCrNbSiTi High Entropy Alloy Coatings on Zr-Sn-Nb Alloy[J]. Nuclear Power Engineering, 2024, 45(S1): 123-129. doi: 10.13832/j.jnpe.2024.S1.0123

Effect of pH on High-temperature Electrochemical Corrosion Behavior of AlCrNbSiTi High Entropy Alloy Coatings on Zr-Sn-Nb Alloy

doi: 10.13832/j.jnpe.2024.S1.0123
  • Received Date: 2023-12-28
  • Rev Recd Date: 2024-04-07
  • Publish Date: 2024-06-15
  • In order to improve the corrosion resistance of Zr-Sn-Nb alloy cladding material in PWR, the AlCrNbSiTi high entropy alloy coatings were prepared on Zr-Sn-Nb alloy substrates by arc ion plating, and the open-circuit potential and potentiodynamic polarization electrochemistry were measured in three different pH water environments. The morphology, chemical composition and structure of the surface oxide film were analyzed by microscopic characterization, and the influence of pH change on the high-temperature electrochemical behavior of AlCrNbSiTi high entropy alloy coating was studied. The results show that with the increase of pH (7.4-8.5), the open circuit potential of the coating decreases, the corrosion current density of polarization curve increases and the corrosion degree of the coating surface intensifies. Therefore, the corrosion resistance of AlCrNbSiTi high entropy alloy coating decreases with the increase of pH(7.4~8.5).

     

  • loading
  • [1]
    ZHANG W, WANG M, WANG L, et al. Interface stability, mechanical and corrosion properties of AlCrMoNbZr/(AlCrMoNbZr)N high-entropy alloy multilayer coatings under helium ion irradiation[J]. Applied Surface Science, 2019, 485: 108-118. doi: 10.1016/j.apsusc.2019.04.192
    [2]
    CHEN J, ZHOU X Y, WANG W L, et al. A review on fundamental of high entropy alloys with promising high–temperature properties[J]. Journal of Alloys and Compounds, 2018, 760: 15-30. doi: 10.1016/j.jallcom.2018.05.067
    [3]
    ZOU Y, WHEELER J M, MA H, et al. Nanocrystalline high-entropy alloys: a new paradigm in high-temperature strength and stability[J]. Nano Letters, 2017, 17(3): 1569-1574. doi: 10.1021/acs.nanolett.6b04716
    [4]
    ZHANG W, TANG R, YANG Z B, et al. Preparation, structure, and properties of an AlCrMoNbZr high-entropy alloy coating for accident-tolerant fuel cladding[J]. Surface and Coatings Technology, 2018, 347: 13-19. doi: 10.1016/j.surfcoat.2018.04.037
    [5]
    XIA S Q, YANG X, YANG T F, et al. Irradiation resistance in Al xCoCrFeNi high entropy alloys[J]. JOM, 2015, 67(10): 2340-2344. doi: 10.1007/s11837-015-1568-4
    [6]
    GARBETT K, MANTELL M A. Corrosion product behaviour during hot functional tests and normal operation in cycle 1 at Sizewell B[C]//Proceedings of the Conference Organized. Bournemouth: British Nuclear Energy Society, 1996: 443-450.
    [7]
    MONTEMOR M F, FERREIRA M G S, WALLS M, et al. Influence of pH on properties of oxide films formed on type 316L stainless steel, Alloy 600, and Alloy 690 in high-temperature aqueous environments[J]. Corrosion, 2003, 59(1): 11-21. doi: 10.5006/1.3277531
    [8]
    ÁLVAREZ P, COLLAZO A, COVELO A, et al. The electrochemical behaviour of sol–gel hybrid coatings applied on AA2024-T3 Alloy: effect of the metallic surface treatment[J]. Progress in Organic Coatings, 2010, 69(2): 175-183. doi: 10.1016/j.porgcoat.2010.04.005
    [9]
    WESSELMANN C. Water in nuclear power plants with light-water reactors part 1: pressurised-water reactors. Part 2: boiling-water reactors[J]. VGB PowerTech, 2021, 101(3): 101.
    [10]
    BETOVA I, BOJINOV M, KARASTOYANOV V, et al. Effect of water chemistry on the oxide film on Alloy 690 during simulated hot functional testing of a pressurised water reactor[J]. Corrosion Science, 2012, 58: 20-32. doi: 10.1016/j.corsci.2012.01.002
    [11]
    陈峰,刘国辉,林巧力,等. 347不锈钢表面堆焊690镍基合金电化学腐蚀性能研究[J]. 动力工程学报,2016, 36(4): 326-330. doi: 10.3969/j.issn.1674-7607.2016.04.012
    [12]
    XIA D H, ZHU R K, BEHNAMIAN Y, et al. pH Effect on sulfur-induced passivity degradation of Alloy 800 in simulated crevice chemistries[J]. Journal of the Electrochemical Society, 2014, 161(4): C201-C214. doi: 10.1149/2.063404jes
    [13]
    吴开源,王勇,赵卫民. 金属结构的腐蚀与防护[M]. 东营: 石油大学出版社,2000: 58-61.
    [14]
    YE Q F, FENG K, LI Z G, et al. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating[J]. Applied Surface Science, 2017, 396: 1420-1426. doi: 10.1016/j.apsusc.2016.11.176
    [15]
    LI Q H, YUE T M, GUO Z N, et al. Microstructure and corrosion properties of AlCoCrFeNi high entropy alloy coatings deposited on AISI 1045 steel by the electrospark process[J]. Metallurgical and Materials Transactions A, 2013, 44(4): 1767-1778. doi: 10.1007/s11661-012-1535-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (26) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return