Citation: | Chen Xiangyang, Ding Yang, Ding Jie, Li Cong, Zhang Xintao. Research Progress and Development Trend of Accident Tolerant Fuel UN Pellets[J]. Nuclear Power Engineering, 2024, 45(S1): 130-137. doi: 10.13832/j.jnpe.2024.S1.0130 |
[1] |
OTT L J, ROBB K R, WANG D. Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions[J]. Journal of Nuclear Materials, 2014, 448(1-3): 520
|
[2] |
潘昕怿,兰兵,贾斌,等. 事故容错燃料包壳和芯块材料中子学分析[J]. 核电子学与探测技术,2016, 36(9): 958-961,965. doi: 10.3969/j.issn.0258-0934.2016.09.018
|
[3] |
United States Nuclear Regulatory Commission. Longer term accident tolerant fuel technologies[EB/OL]. (2021-01-12)[2022-04-15]. https://www.nrc.gov/reactors/power/atf/technologies/longer-term.html.
|
[4] |
尹邦跃,屈哲昊. 热压烧结UN陶瓷芯块的性能[J]. 原子能科学技术,2014, 48(10): 1850-1856. doi: 10.7538/yzk.2014.48.10.1850
|
[5] |
BLANCHARD J, BUTT D, MEYER M, et al. Development of advanced high uranium density fuels for light water reactors: project no. 11-3041[R]. USA: U. S. Department of Energy, 2016.
|
[6] |
JAQUES B J, WATKINS J, CROTEAU J R, et al. Synthesis and sintering of UN-UO2 fuel composites[J]. Journal of Nuclear Materials, 2015, 466: 745-754. doi: 10.1016/j.jnucmat.2015.06.029
|
[7] |
ALEXANDER C A. Metal-actinide nitride nuclear fuel: US, 4624828[P]. 1986-11-25.
|
[8] |
尹邦跃,屈哲昊. 氮化铀燃料粉末和芯块的制备方法: 中国,201310403675.6[P]. 2013-12-25.
|
[9] |
MUTA H, KUROSAKI K, UNO M, et al. Thermal and mechanical properties of uranium nitride prepared by SPS technique[J]. Journal of Materials Science, 2008, 43(19): 6429-6434. doi: 10.1007/s10853-008-2731-x
|
[10] |
HAYES S L, THOMAS J K, PEDDICORD K L. Material property correlations for uranium mononitride: I. Physical properties[J]. Journal of Nuclear Materials, 1990, 171(2-3): 262-270. doi: 10.1016/0022-3115(90)90374-V
|
[11] |
HAYES S L, THOMAS J K, PEDDICORD K L. Material property correlations for uranium mononitride: II. Mechanical properties[J]. Journal of Nuclear Materials, 1990, 171(2-3): 271-288. doi: 10.1016/0022-3115(90)90375-W
|
[12] |
苏著亭,杨继材,柯国土. 空间核动力[M]. 上海: 上海交通大学出版社,2016: 211.
|
[13] |
KEMPTER C P, ELLIOTT R O. Thermal expansion of 〈UN〉, 〈UO2〉, 〈UO2·ThO2〉, and〈ThO2〉[J]. The Journal of Chemical Physics, 1959, 30(6): 1524-1526. doi: 10.1063/1.1730230
|
[14] |
YOUINOU G J, SEN R S. Impact of accident-tolerant fuels and claddings on the overall fuel cycle: a preliminary systems analysis[J]. Nuclear Technology, 2014, 188(2): 123-138. doi: 10.13182/NT14-22
|
[15] |
JAQUES B J, WATKINS J, BUTT D P, et al. Hydrothermal corrosion studies on nitride fuels[C]//Top Fuel 2016: LWR Fuels with Enhanced Safety and Performance. Boise: American Nuclear Society, 2016.
|
[16] |
LESSING P A. Oxidation protection of uranium nitride fuel using liquid phase sintering: INL/EXT-12-24974[R]. Idaho Falls: Idaho National Laboratory, 2012.
|
[17] |
FENG B, KARAHAN A, KAZIMI M S. Steady-state fuel behavior modeling of nitride fuels in FRAPCON-EP[J]. Journal of Nuclear Materials, 2012, 427(1-3): 30-38. doi: 10.1016/j.jnucmat.2012.04.011
|
[18] |
BAUER A A, BROWN J B, FROMM E O, et al. Mixed-nitride fuel irradiation performance[C]//Proceedings of ANS Conference on Fast Reactor Fuel Element Technology. New Orleans: Battelle Memorial Inst. , 1971: 785-818.
|
[19] |
ROUTBORT J L, SINGH R N. Elastic, diffusional, and mechanical properties of carbide and nitride nuclear fuels-a review[J]. Journal of Nuclear Materials, 1975, 58(1): 78-114. doi: 10.1016/0022-3115(75)90169-5
|
[20] |
TANAKA K, MAEDA K, KATSUYAMA K, et al. Fission gas release and swelling in uranium–plutonium mixed nitride fuels[J]. Journal of Nuclear Materials, 2004, 327(2-3): 77-87. doi: 10.1016/j.jnucmat.2004.01.002
|
[21] |
ROGOZKIN B D, STEPENNOVA N M, PROSHKIN A A. Mononitride fuel for fast reactors[J]. Atomic Energy, 2003, 95(3): 624-636. doi: 10.1023/B:ATEN.0000007886.86817.32
|
[22] |
ARAI Y, MAEDA A, SHIOZAWA K I, et al. Chemical forms of solid fission products in the irradiated uranium-plutonium mixed nitride fuel[J]. Journal of Nuclear Materials, 1994, 210(1-2): 161-166. doi: 10.1016/0022-3115(94)90233-X
|
[23] |
ALEKSEEV S V, VYBYVANETS V I, GONTAR’ A S, et al. Promising fuel materials for thermionic nuclear power installations[J]. Atomic Energy, 2014, 115(6): 391-401. doi: 10.1007/s10512-014-9801-8
|
[24] |
RICHTER K, SARI C. Investigation of the operational limits of uranium-plutonium nitride fuels[J]. Journal of Nuclear Materials, 1991, 184(3): 167-176. doi: 10.1016/0022-3115(91)90537-H
|
[25] |
POPLAVSKII V M, TSIBULYA A M, KHOMYAKOV Y S, et al. Core and fuel cycle for an advanced sodium-cooled fast reactor[J]. Atomic Energy, 2010, 108(4): 260-266. doi: 10.1007/s10512-010-9287-y
|
[26] |
KAZIMI M S, DOBISESKY J, CARPENTER D M, et al. PWR cores with silicon carbide cladding: MIT-NFC;PR-124[R]. California: Electric Power Research Institute, 2011.
|
[27] |
TERRANI K A. Accident tolerant fuel cladding development: promise, status, and challenges[J]. Journal of Nuclear Materials, 2018, 501: 13-30. doi: 10.1016/j.jnucmat.2017.12.043
|
[28] |
YANG K, KARDOULAKI E, ZHAO D, et al. Cr-incorporated uranium nitride composite fuels with enhanced mechanical performance and oxidation resistance[J]. Journal of Nuclear Materials, 2022, 559: 153486. doi: 10.1016/j.jnucmat.2021.153486
|