Citation: | Zhang Yue, Lan Yang, Wang Chengyu, Yang Sha. Overview of Research on Corrosion Properties of Additively Manufactured Products in the Nuclear Field[J]. Nuclear Power Engineering, 2024, 45(S1): 208-214. doi: 10.13832/j.jnpe.2024.S1.0208 |
[1] |
李莹,张百成,曲选辉. 金属增材制造的微观组织特征对其抗腐蚀行为影响的研究进展[J]. 工程科学学报,2022, 44(4): 573-589.
|
[2] |
LODHI M J K, DEEN K M, HAIDER W. Corrosion behavior of additively manufactured 316L stainless steel in acidic media[J]. Materialia, 2018, 2: 111-121. doi: 10.1016/j.mtla.2018.06.015
|
[3] |
LI M M, CHEN W Y, ZHANG X, et al. Location-dependent mechanical property evaluation on additively manufacture materials: AC02-06CH11357[R]. Argonne: Argonne National Laboratory, 2021.
|
[4] |
LOU X Y, SONG M, EMIGH P W, et al. On the stress corrosion crack growth behaviour in high temperature water of 316L stainless steel made by laser powder bed fusion additive manufacturing[J]. Corrosion Science, 2017, 128: 140-153. doi: 10.1016/j.corsci.2017.09.017
|
[5] |
MCMURTREY M, SUN C, RUPP R E, et al. Investigation of the irradiation effects in additively manufactured 316L steel resulting in decreased irradiation assisted stress corrosion cracking susceptibility[J]. Journal of Nuclear Materials, 2021, 545: 152739. doi: 10.1016/j.jnucmat.2020.152739
|
[6] |
KAZEMIPOUR M, MOHAMMADI M, MFOUMOU E, et al. Microstructure and corrosion characteristics of selective laser-melted 316L stainless steel: the impact of process-induced porosities[J]. JOM, 2019, 71(9): 3230-3240. doi: 10.1007/s11837-019-03647-w
|
[7] |
SURYAWANSHI J, BASKARAN T, PRAKASH O, et al. On the corrosion resistance of some selective laser melted alloys[J]. Materialia, 2018, 3: 153-161. doi: 10.1016/j.mtla.2018.08.022
|
[8] |
ZIĘTALA M, DUREJKO T, POLAŃSKI M, et al. The microstructure, mechanical properties and corrosion resistance of 316 L stainless steel fabricated using laser engineered net shaping[J]. Materials Science and Engineering: A, 2016, 677: 1-10. doi: 10.1016/j.msea.2016.09.028
|
[9] |
STOUDT M R, CAMPBELL C E, RICKER R E. Examining the relationship between post-build microstructure and the corrosion resistance of additively manufactured 17-4PH stainless steel[J]. Materialia, 2022, 22: 101435. doi: 10.1016/j.mtla.2022.101435
|
[10] |
MELIA M A, NGUYEN H D A, RODELAS J M, et al. Corrosion properties of 304L stainless steel made by directed energy deposition additive manufacturing[J]. Corrosion Science, 2019, 152: 20-30. doi: 10.1016/j.corsci.2019.02.029
|
[11] |
LALEH M, HUGHES A E, XU W, et al. Unexpected erosion-corrosion behaviour of 316L stainless steel produced by selective laser melting[J]. Corrosion Science, 2019, 155: 67-74. doi: 10.1016/j.corsci.2019.04.028
|
[12] |
李学军,朱平,尚建路,等. 电弧增材制造的核级316L不锈钢组织及腐蚀性能研究[J]. 热加工工艺,2023, 52(19): 24-27.
|
[13] |
ZHANG W Z, XU Y W, SHI Y, et al. Intergranular corrosion characteristics of high-efficiency wire laser additive manufactured Inconel 625 alloys[J]. Corrosion Science, 2022, 205: 110422. doi: 10.1016/j.corsci.2022.110422
|
[14] |
邓话,秦国鹏. 核燃料零部件的金属增材制造技术研发[J]. 中国核电,2020, 13(6): 769-773,787.
|
[15] |
3D科学谷. 上海理工大学科研成果| 3D打印网状过滤构件,对标核电站堆芯过滤组件[EB/OL]. (2023-06-14)[2023-09-08]. https://cloud.tencent.com/developer/news/1102528.
|
[16] |
STULL J A, HILL M A, LIENERT T J, et al. Corrosion characteristics of laser-engineered net shaping additively-manufactured 316L stainless steel[J]. JOM, 2018, 70(11): 2677-2683. doi: 10.1007/s11837-018-3123-6
|
[17] |
刘丰刚,张文军,刘奋成,等. 激光增材制造300M钢的组织及耐腐蚀性能[J]. 特种铸造及有色合金,2022, 42(9): 1071-1075.
|
[18] |
REVILLA R I, VAN CALSTER M, RAES M, et al. Microstructure and corrosion behavior of 316L stainless steel prepared using different additive manufacturing methods: a comparative study bringing insights into the impact of microstructure on their passivity[J]. Corrosion Science, 2020, 176: 108914. doi: 10.1016/j.corsci.2020.108914
|
[19] |
ZHOU C S, HU S Y, SHI Q Y, et al. Improvement of corrosion resistance of SS316L manufactured by selective laser melting through subcritical annealing[J]. Corrosion Science, 2020, 164: 108353. doi: 10.1016/j.corsci.2019.108353
|
[20] |
沈志胤. 丝材电弧增材制造ZL114A合金热处理工艺及耐腐蚀性能[D]. 沈阳: 沈阳工业大学,2022.
|
[21] |
QUE Z Q, RIIPINEN T, GOEL S, et al. SCC behaviour of laser powder bed fused 316L stainless steel in high-temperature water at 288℃[J]. Corrosion Science, 2023, 214: 111022. doi: 10.1016/j.corsci.2023.111022
|