Advance Search
Volume 45 Issue S2
Jan.  2025
Turn off MathJax
Article Contents
Zeng Wei, Wang Conglin, Liu Chengmin, Liu Jia, Li Songwei, Gong Zhaohu, Wang Jie, Huang Qingyu, Fang Haoyu. Overall Architecture and Key Technologies of Digital Reactor[J]. Nuclear Power Engineering, 2024, 45(S2): 1-13. doi: 10.13832/j.jnpe.2024.S2.0001
Citation: Zeng Wei, Wang Conglin, Liu Chengmin, Liu Jia, Li Songwei, Gong Zhaohu, Wang Jie, Huang Qingyu, Fang Haoyu. Overall Architecture and Key Technologies of Digital Reactor[J]. Nuclear Power Engineering, 2024, 45(S2): 1-13. doi: 10.13832/j.jnpe.2024.S2.0001

Overall Architecture and Key Technologies of Digital Reactor

doi: 10.13832/j.jnpe.2024.S2.0001
  • Received Date: 2024-07-22
  • Rev Recd Date: 2024-09-11
  • Publish Date: 2025-01-06
  • A digital reactor represents a comprehensive integrated platform that harnesses the power of high-precision numerical simulations, interdisciplinary data models, big data, and artificial intelligence to implement the full life-cycle management of nuclear reactors within a digital realm. To address the demands of multi-level business activities of nuclear reactors, leveraging advancements in digital technology, a digital reactor platform architecture characterized by a unified platform and two fundamental cores has been developed. Furthermore, the design of the technical architecture has been implemented through comprehensive integration and application, numerical computation cores, and big data frameworks, thereby empowering the full life-cycle management of nuclear reactors. The key technologies, problems and challenges in the application of digital reactor are analyzed and studied, and the subsequent development trend is analyzed and prospected.

     

  • loading
  • [1]
    TURINSKY P J, KOTHE D B. Modeling and simulation challenges pursued by the consortium for advanced simulation of light water reactors (CASL)[J]. Journal of Computational Physics, 2016, 313: 367-376. doi: 10.1016/j.jcp.2016.02.043
    [2]
    BRADLEY K. NEAMS: the nuclear energy advanced modeling and simulation program: No. ANL/NEAMS-13/5[R]. Argonne: Argonne National Laboratory, 2013.
    [3]
    CHANARON B, AHNERT C, CROUZET N, et al. Advanced multi-physics simulation for reactor safety in the framework of the NURESAFE project[J]. Annals of Nuclear Energy, 2015, 84: 166-177. doi: 10.1016/j.anucene.2014.12.013
    [4]
    余红星,李文杰,柴晓明,等. 数字反应堆发展与挑战[J]. 核动力工程,2020, 41(4): 1-7.
    [5]
    邢帆. 我国数字微堆获技术突破[J]. 中国信息化,2016(8): 22.
    [6]
    郭景任. 智能核电的解决方案及应用[J]. 中国核工业,2019(6): 23-24. doi: 10.3969/j.issn.1007-8282.2019.06.008
    [7]
    朱俊志,杨珏,万蕾,等. 需求建模方法在核电需求分析中的应用[J]. 核动力工程,2020, 41(5): 104-109.
    [8]
    ESTEFAN J A. Survey of model-based systems engineering (MBSE) methodologies[Z]. INCOSE MBSE Focus Group, 2007.
    [9]
    CELIK I, KLEIN M, FREITAG M, et al. Assessment measures for URANS/DES/LES: an overview with applications[J]. Journal of Turbulence, 2006, 7: N48. doi: 10.1080/14685240600794379
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (78) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return