Advance Search
Volume 45 Issue S2
Jan.  2025
Turn off MathJax
Article Contents
Liu Hongquan, Xiang Fengrui, Wu Yingwei, He Yanan, Zhang Jing, Su Guanghui. Study on Simulation Technology of Cracking and Blistering of Particle Dispersed Plate Fuel Element[J]. Nuclear Power Engineering, 2024, 45(S2): 84-92. doi: 10.13832/j.jnpe.2024.S2.0084
Citation: Liu Hongquan, Xiang Fengrui, Wu Yingwei, He Yanan, Zhang Jing, Su Guanghui. Study on Simulation Technology of Cracking and Blistering of Particle Dispersed Plate Fuel Element[J]. Nuclear Power Engineering, 2024, 45(S2): 84-92. doi: 10.13832/j.jnpe.2024.S2.0084

Study on Simulation Technology of Cracking and Blistering of Particle Dispersed Plate Fuel Element

doi: 10.13832/j.jnpe.2024.S2.0084
  • Received Date: 2024-07-23
  • Rev Recd Date: 2024-09-26
  • Publish Date: 2025-01-06
  • Cracking and blistering may occur when the particle dispersed plate fuel element runs in the reactor, which affects the safety of fuel and nuclear reactor. In this paper, numerical simulation research on cracking and blistering of particle dispersed plate fuel element is carried out. To realize the cracking analysis and blistering simulation from the fine-scale fuel particles to the macro-scale fuel elements, this paper first establishes a set of multi-dimensional multi-scale coupled simulation methods. With the multi-scale coupling scheme from fine-scale fuel particles to the macro-scale fuel element, the fuel element cracking risk region determination is realized. Based on the multi-dimensional coupling system that includes a 3D fuel element, a 1D coolant, and a 2D fuel slice, the extended finite element method (XFEM) is applied to realize the 2D cracking and blistering simulation of the fuel element. To accurately judge the occurrence of blistering, a fission gas internal pressure model is established in this paper, which is combined with the 2D extended finite element. Finally, the crack extension simulation of macroscopic fuel elements under thermal shock conditions is realized, and the temperature at which blistering occurs is predicted to be about 790 K when the fuel burnup is 120 MW·d·kg−1(U).

     

  • loading
  • [1]
    高利军,陈炳德,姜胜耀,等. 弥散型燃料板的辐照起泡机理分析[J]. 原子能科学技术,2012, 46(S2): 819-825.
    [2]
    龙冲生,赵毅,高雯,等. 基于断裂强度的陶瓷燃料颗粒开裂模型[J]. 核动力工程,2014, 35(1): 92-96,105.
    [3]
    赵毅,龙冲生,王晓敏. 弥散燃料颗粒裂纹起源的有限元模拟分析[J]. 原子能科学技术,2015, 49(2): 311-315.
    [4]
    陈洪生,龙冲生,肖红星,等. 裂变气体气泡尺寸对弥散燃料颗粒内部特征的影响规律[J]. 核动力工程,2018, 39(2): 27-31.
    [5]
    陈洪生,龙冲生,肖红星,等. 基于弥散燃料颗粒开裂的裂变气体释放模型[J]. 核动力工程,2019, 40(5): 85-91.
    [6]
    陈洪生,龙冲生,肖红星. 基于弥散燃料颗粒开裂的金属基体裂纹特征模型[J]. 原子能科学技术,2020, 54(2): 334-339.
    [7]
    严峰,丁淑蓉,李垣明,等. UMo/Zr单片式燃料板起泡行为数值模拟[J]. 原子能科学技术,2018, 52(6): 1063-1069.
    [8]
    GEELHOOD K J, LUSCHER W G, RAYNAUD P A, et al. FRAPCON-4.0 - a computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup: PNNL-19418, Vol.1 Rev.2[R]. Washington: U. S. Department of Energy, 2015.
    [9]
    GEELHOOD K J, LUSCHER W G. FRAPTRAN-1.5 - integral assessment: PNNL-19400, Vol. 2, Rev. 1[R]. Richland: Pacific Northwest National Laboratory, 2014.
    [10]
    DENG Y B, WU Y W, LI Y M, et al. Mechanism study and theoretical simulation on heat split phenomenon in dual-cooled annular fuel element[J]. Annals of Nuclear Energy, 2016, 94: 44-54. doi: 10.1016/j.anucene.2016.02.019
    [11]
    DENG Y B, WU Y W, ZHANG D L, et al. Thermal-mechanical coupling behavior analysis on metal-matrix dispersed plate-type fuel[J]. Progress in Nuclear Energy, 2017, 95: 8-22. doi: 10.1016/j.pnucene.2016.11.007
    [12]
    DENG Y B, WU Y W, GONG C, et al. Upgrade of FROBA code and its application in thermal-mechanical analysis of space reactor fuel[J]. Nuclear Engineering and Design, 2018, 332: 297-306. doi: 10.1016/j.nucengdes.2018.03.041
    [13]
    HALES J D, NOVASCONE S R, SPENCER B W, et al. Verification of the BISON fuel performance code[J]. Annals of Nuclear Energy, 2014, 71: 81-90. doi: 10.1016/j.anucene.2014.03.027
    [14]
    WILLIAMSON R L, CAPPS N A, LIU W, et al. Multi-dimensional simulation of LWR fuel behavior in the BISON fuel performance code[J]. JOM, 2016, 68(11): 2930-2937. doi: 10.1007/s11837-016-2115-7
    [15]
    HE Y A, CHEN P, WU Y W, et al. Preliminary evaluation of U3Si2-FeCrAl fuel performance in light water reactors through a multi-physics coupled way[J]. Nuclear Engineering and Design, 2018, 328: 27-35.
    [16]
    邓超群,向烽瑞,贺亚男,等. 基于MOOSE平台的棒状燃料元件性能分析程序开发与验证[J]. 原子能科学技术,2021, 55(7): 1296-1303.
    [17]
    邓超群,向烽瑞,贺亚男,等. 基于MOOSE平台的棒状燃料元件性能瞬态分析程序开发与验证[J]. 原子能科学技术,2021, 55(8): 1429-1439.
    [18]
    HE Y A, NIU Y H, XIANG F R, et al. Preliminary development of a multi-physics coupled fuel performance code for annular fuel analysis under normal conditions[J]. Nuclear Engineering and Design, 2022, 393: 111810.
    [19]
    XIANG F R, HE Y A, NIU Y H, et al. A new method to simulate dispersion plate-type fuel assembly in a multi-physics coupled way[J]. Annals of Nuclear Energy, 2022, 166: 108734.
    [20]
    XIANG F R, HE Y A, WU Y W, et al. Investigation of plate fuel performance under reactivity initiated accidents with developed multi-dimensional coupled method[J]. Journal of Nuclear Materials, 2023, 583: 154537.
    [21]
    LIU R, PRUDIL A, ZHOU W Z, et al. Multiphysics coupled modeling of light water reactor fuel performance[J]. Progress in Nuclear Energy, 2016, 91: 38-48. doi: 10.1016/j.pnucene.2016.03.030
    [22]
    WANG Y Y, GUO Y H, WU Y W, et al. Preliminary analysis on the thermal-mechanical behavior of dispersed plate-type fuel under reactivity insertion accident[J]. Annals of Nuclear Energy, 2021, 163: 108509. doi: 10.1016/j.anucene.2021.108509
    [23]
    NASIR R, MIRZA N M, MIRZA S M. Sensitivity of reactivity insertion limits with respect to safety parameters in a typical MTR[J]. Annals of Nuclear Energy, 1999, 26(17): 1517-1535. doi: 10.1016/S0306-4549(99)00038-9
    [24]
    MIRZA A M, KHANAM S, MIRZA N M. Simulation of reactivity transients in current MTRs[J]. Annals of Nuclear Energy, 1998, 25(18): 1465-1484. doi: 10.1016/S0306-4549(98)00020-6
    [25]
    KHATER H, ABU-EL-MATY T, EL-DIN EL-MORSHDY S. Thermal-hydraulic modeling of reactivity accidents in MTR reactors[J]. Nuclear Technology and Radiation Protection, 2006, 21(2): 21-32. doi: 10.2298/NTRP0602021K
    [26]
    IAEA. Research reactor core conversion from the use of highly enriched uranium fuels: guidebook: IAEA-TECDOC-233[R]. Vienna: International Atomic Energy Agency, 1980.
    [27]
    IAEA. Research reactor core conversion guidebook: volume 4: fuels (appendices I-K): IAEA-TECDOC-643[R]. Vienna: International Atomic Energy Agency, 1992.
    [28]
    LUCUTA P G, MATZKE H J, HASTINGS I J. A pragmatic approach to modelling thermal conductivity of irradiated UO2 fuel: review and recommendations[J]. Journal of Nuclear Materials, 1996, 232(2-3): 166-180. doi: 10.1016/S0022-3115(96)00404-7
    [29]
    HARDING J H, MARTIN D G. A recommendation for the thermal conductivity of UO2[J]. Journal of Nuclear Materials, 1989, 166(3): 223-226. doi: 10.1016/0022-3115(89)90218-3
    [30]
    SIEFKEN L J, CORYELL E W, HARVEGO E A, et al. SCDAP/RELAP5/MOD 3.3 code manual: MATPRO-A library of materials properties for light-water-reactor accident analysis: Technical Report NUREG/CR-6150[R]. Washington: Division of Systems Technology, Office of Nuclear Regulatory Research, U. S. Nuclear Regulatory Commission, 2001.
    [31]
    ALLISON C M, BERNA G A, CHAMBERS R, et al. SCDAP/RELAP5/MOD 3.1 code manual: MATPRO–A library of materials properties for light-water-reactor accident analysis: NUREG/CR-6150[R]. Washington: Idaho National Engineering Laboratory, 1993.
    [32]
    MAXWELL J C. A treatise on electricity and magnetism[M]. Oxford: Clarendon Press, 1873: 365.
    [33]
    姜馨. 弥散型燃料的等效性质及棒状元件的辐照力学行为的研究[D]. 上海: 复旦大学,2009.
    [34]
    杨烁. 核燃料元件内陶瓷颗粒的开裂行为模拟及PCI失效行为研究[D]. 西安: 西安交通大学,2021.
    [35]
    JIANG W, SPENCER B W, DOLBOW J E. Ceramic nuclear fuel fracture modeling with the extended finite element method[J]. Engineering Fracture Mechanics, 2020, 223: 106713. doi: 10.1016/j.engfracmech.2019.106713
    [36]
    伍晓勇,王斐,温榜. UO2弥散型燃料辐照后高温失效时显微分析[J]. 核动力工程,2012, 33(1): 74-77.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(1)

    Article Metrics

    Article views (38) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return