Advance Search
Volume 45 Issue S2
Jan.  2025
Turn off MathJax
Article Contents
Xie Lin, Liao Haoyang, Zhao Fulong, Wang Xianbo, Li Yufeng, Wang Xu, Tan Sichao, Tian Ruifeng. Study on Shielding and Weight Reduction Characteristics of Shadow Shield with Internally Tangent Structure in Small Space Reactor[J]. Nuclear Power Engineering, 2024, 45(S2): 115-121. doi: 10.13832/j.jnpe.2024.S2.0115
Citation: Xie Lin, Liao Haoyang, Zhao Fulong, Wang Xianbo, Li Yufeng, Wang Xu, Tan Sichao, Tian Ruifeng. Study on Shielding and Weight Reduction Characteristics of Shadow Shield with Internally Tangent Structure in Small Space Reactor[J]. Nuclear Power Engineering, 2024, 45(S2): 115-121. doi: 10.13832/j.jnpe.2024.S2.0115

Study on Shielding and Weight Reduction Characteristics of Shadow Shield with Internally Tangent Structure in Small Space Reactor

doi: 10.13832/j.jnpe.2024.S2.0115
  • Received Date: 2024-07-23
  • Rev Recd Date: 2024-10-28
  • Publish Date: 2025-01-06
  • The mass of shadow shield of nuclear powered spacecraft is positively correlated with the power required by the mission. Aiming at the situation that the mass required for radiation shielding of high-power spacecraft is too large but the mass limit is too much, the shadow shield structure optimization analysis is carried out, and the structure optimization scheme and the comprehensive performance analysis method of the shield are put forward. Monte Carlo method is used to calculate the neutron transport in the inner and rear area of the shadow shield with internally tangent structure, and the effects of different internally tangent schemes on shielding effect, weight reduction effect and comprehensive performance of the combination of the two are analyzed. The results show that under the scheme of shielding effect weight factor of 0.4 and weight reduction effect weight factor of 0.6, the scheme using the tail internally tangent circle ring with the diameter less than 4 cm has improved the comprehensive shielding performance compared with the original scheme. Compared with B4C material, LiH material has better overall shielding performance and can achieve shielding weight reduction without greatly affecting shielding capability. It provides ideas and analysis methods for further research on shielding weight reduction methods for high-power nuclear spacecraft.

     

  • loading
  • [1]
    JIN Z, WANG C L, LIU X, et al. Operation and safety analysis of space lithium-cooled fast nuclear reactor[J]. Annals of Nuclear Energy, 2022, 166: 108729. doi: 10.1016/j.anucene.2021.108729
    [2]
    黄才勇. 空间电源的研究现状与展望[J]. 电子科学技术评论,2004(5): 1-6.
    [3]
    徐军,康青,沈志强,等. 核防护用水泥基中子屏蔽材料的研究进展[J]. 材料开发与应用,2011, 26(5): 92-95,100. doi: 10.3969/j.issn.1003-1545.2011.05.022
    [4]
    IAEA. The role of nuclear power and nuclear propulsion in the peaceful exploration of space[M]. Vienna: International Atomic Energy Agency, 2005: 1-6.
    [5]
    苏著亭,杨继材,柯国土. 空间核动力[M]. 上海: 上海交通大学出版社,2016: 230-249.
    [6]
    NASA. Fission surface power system initial concept definition: NASA/TM—2010-216772[R]. Cleveland: Glenn Research Center, 2013: 1-10.
    [7]
    陶玲. 热离子空间核电源冷却系统的研究[D]. 哈尔滨: 哈尔滨工业大学,2006: 1-11.
    [8]
    何宇豪,孟涛,卢瑞博,等. 空间核反应堆电源研究进展[J]. 上海航天,2019, 36(6): 126-133.
    [9]
    WOLLMAN M J, ZIKA M J. Prometheus project reactor module final report, for naval reactors information: SPP-67110-0008[R]. Niskayuna: Knolls Atomic Power Laboratory (KAPL), West Mifflin: Bettis Atomic Power Laboratory (BAPL), 2006.
    [10]
    TAYLOR R. Prometheus project final report: 982-R120461[R]. Pasadena: Jet Propulsion Laboratory, 2005.
    [11]
    LEWIS R. Space shielding materials for Prometheus application: MDO-723-0049[R]. Niskayuna: Knolls Atomic Power Laboratory (KAPL), 2006.
    [12]
    何宇豪,赵富龙,谢林,等. 控制棒对核动力航天器辐射屏蔽特性的影响[J]. 哈尔滨工程大学学报,2024, 45(2): 390-397. doi: 10.11990/jheu.202205043
    [13]
    KING J C, DE HOLANDA MENCARINI L. Shielding analysis for a moderated low-enriched-uranium–fueled kilopower reactor[J]. Nuclear Technology, 2022, 208(7): 1137-1148. doi: 10.1080/00295450.2021.2004870
    [14]
    ZHU K J, DOU Q R, ZHANG H, et al. The deterministic neutron transport calculation for the HTR-PM by the three-dimensional method of characteristics code ARCHER[J]. Annals of Nuclear Energy, 2024, 197: 110286. doi: 10.1016/j.anucene.2023.110286
    [15]
    张文书,魏晨,李兵,等. 增材制造不同微-纳粒径比B4C增强TC4复合材料组织及性能研究[J]. 材料开发与应用,2024, 39(4): 10-17.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (22) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return