Citation: | Deng Zhiguang, Li Zhengxi, He Liang, Wu Qian, Zhu Jialiang, Zhu Biwei, Xu Tao, Wang Hailin. Research on Sensor Fault Diagnosis of Nuclear Power Plant Based on Improved CWT-CNN[J]. Nuclear Power Engineering, 2024, 45(S2): 156-162. doi: 10.13832/j.jnpe.2024.S2.0156 |
[1] |
YANG Z X, XU P, ZHANG B, et al. Nuclear power plant sensor signal reconstruction based on deep learning methods[J]. Annals of Nuclear Energy, 2022, 167: 108765. doi: 10.1016/j.anucene.2021.108765
|
[2] |
GAUTAM S, TAMBOLI P K, ROY K, et al. Sensors incipient fault detection and isolation of nuclear power plant using extended Kalman filter and Kullback–Leibler divergence[J]. ISA Transactions, 2019, 92: 180-190. doi: 10.1016/j.isatra.2019.02.011
|
[3] |
刘红艳,麦艳红,孔繁镍,等. 利用自适应粒子滤波的传感器故障诊断识别[J]. 控制工程,2019, 26(7): 1425-1430.
|
[4] |
YU Y, PENG M J, WANG H, et al. Improved PCA model for multiple fault detection, isolation and reconstruction of sensors in nuclear power plant[J]. Annals of Nuclear Energy, 2020, 148: 107662. doi: 10.1016/j.anucene.2020.107662
|
[5] |
ZHU S M, XIA H, ANNOR-NYARKO M, et al. A robust strategy for sensor fault detection in nuclear power plants based on principal component analysis[J]. Annals of Nuclear Energy, 2021, 164: 108621. doi: 10.1016/j.anucene.2021.108621
|
[6] |
MESSAI A, MELLIT A, ABDELLANI I, et al. On-line fault detection of a fuel rod temperature measurement sensor in a nuclear reactor core using ANNs[J]. Progress in Nuclear Energy, 2015, 79: 8-21. doi: 10.1016/j.pnucene.2014.10.013
|
[7] |
尹子会,孟延辉,赵智龙,等. 声振信号构造CNN特征矩阵的断路器储能机构故障诊断方法[J]. 高压电器,2023, 59(9): 242-249.
|
[8] |
马立玲,郭建,汪首坤,等. 基于改进CNN-GRU网络的多源传感器故障诊断方法[J]. 北京理工大学学报,2021, 41(12): 1245-1252.
|
[9] |
VERSTRAETE D, FERRADA A, LÓPEZ DROGUETT E, et al. Deep learning enabled fault diagnosis using time-frequency image analysis of rolling element bearings[J]. Shock and Vibration, 2017, 2017: 5067651.
|
[10] |
ALASKAR H. Deep learning-based model architecture for time-frequency images analysis[J]. International Journal of Advanced Computer Science and Applications, 2018, 9(12): 486-494.
|
[11] |
CHEN R X, HUANG X, YANG L X, et al. Intelligent fault diagnosis method of planetary gearboxes based on convolution neural network and discrete wavelet transform[J]. Computers in Industry, 2019, 106: 48-59. doi: 10.1016/j.compind.2018.11.003
|
[12] |
郑攀,周建华,高素杰,等. 基于SPS与CNN的行星齿轮箱故障特征提取与诊断研究[J]. 机械传动,2022, 46(4): 73-79,147.
|
[13] |
郭庆华. CNN在单帧舰船回转运动图像特征提取中的应用[J]. 舰船科学技术,2021, 43(22): 190-192.
|
[14] |
JING L Y, ZHAO M, LI P, et al. A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox[J]. Measurement, 2017, 111: 1-10. doi: 10.1016/j.measurement.2017.07.017
|
[15] |
郭旭,骆勇鹏,王林堃,等. 基于CNN与DCGAN的结构振动监测传感器故障诊断及监测数据恢复[J]. 铁道科学与工程学报,2022, 19(11): 3383-3395.
|