Citation: | Pang Tianfeng, Li Shujian, Yang Taibo, Luo Neng. Research on Vibration Signal Classification Method of the Key Equipment of Reactor Based on Open-set Recognition[J]. Nuclear Power Engineering, 2024, 45(S2): 163-167. doi: 10.13832/j.jnpe.2024.S2.0163 |
[1] |
ZHAO M, ZHONG S, FU X, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2019, 16(7): 4681-4690.
|
[2] |
KHAN S, YAIRI T. A review on the application of deep learning in system health management[J]. Mechanical Systems and Signal Processing, 2018, 107: 241-265. doi: 10.1016/j.ymssp.2017.11.024
|
[3] |
雷亚国,何正嘉. 混合智能故障诊断与预示技术的应用进展[J]. 振动与冲击,2011, 30(9): 129-135.
|
[4] |
段智勇,刘才学,艾琼,等. 基于随机森林的屏蔽泵故障诊断方法研究[J]. 核科学与工程,2020, 40(4): 625-630.
|
[5] |
NALISNICK E T, MATSUKAWA A, TEH Y W, et al. Do deep generative models know what they don’t know?[C]//Proceedings of the 7th International Conference on Learning Representations. New Orleans: OpenReview. net, 2019.
|
[6] |
SCHEIRER W J, DE REZENDE ROCHA A, SAPKOTA A, et al. Toward open set recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(7): 1757-1772. doi: 10.1109/TPAMI.2012.256
|
[7] |
TAO Y, SHI H B, SONG B, et al. Hierarchical latent variable extraction and multisegment probability density analysis method for incipient fault detection[J]. IEEE Transactions on Industrial Informatics, 2022, 18(4): 2244-2254. doi: 10.1109/TII.2021.3090753
|
[8] |
RUFF L, VANDERMEULEN R A, GÖRNITZ N, et al. Deep one-class classification[C]//Proceedings of the 35th International Conference on Machine Learning. Stockholm: PMLR, 2018.
|