Advance Search
Volume 45 Issue S2
Jan.  2025
Turn off MathJax
Article Contents
Tang Hairong, Li Ying, Lou Ruifan, Yue Nina, Wang Suhao, Wang Sheng. Research on Impurity Regulation and Purification Technology of Liquid Lead-based Metal Coolant[J]. Nuclear Power Engineering, 2024, 45(S2): 274-278. doi: 10.13832/j.jnpe.2024.S2.0274
Citation: Tang Hairong, Li Ying, Lou Ruifan, Yue Nina, Wang Suhao, Wang Sheng. Research on Impurity Regulation and Purification Technology of Liquid Lead-based Metal Coolant[J]. Nuclear Power Engineering, 2024, 45(S2): 274-278. doi: 10.13832/j.jnpe.2024.S2.0274

Research on Impurity Regulation and Purification Technology of Liquid Lead-based Metal Coolant

doi: 10.13832/j.jnpe.2024.S2.0274
  • Received Date: 2024-06-21
  • Rev Recd Date: 2024-09-21
  • Publish Date: 2025-01-06
  • Liquid lead-based metal is the mainstream candidate working fluid for the international fourth generation fast reactors and accelerator-driven subcritical systems. However, the liquid lead-based coolant has problems during the long-term operation in the non-isothermal system, such as continuous generation of impurities, large accumulation, difficulty to avoid and to deal with, which will lead to deposition and scaling, deterioration of heat transfer, and even blockage of the flow, causing significant safety risks. Therefore, the purification and regulation of impurities in lead-based liquid metal coolant is a key technology to be broken through in the design and development of lead-cooled fast reactor. This paper mainly introduces the source and occurrence form of impurities in lead-based coolant, and the research status of purification technology. The advantages and limitations of inhibition generation method, filtration capture method and reduction method are summarized. Finally, the selection and challenges of impurity purification strategies for lead-cooled reactor systems with different specifications and forms are discussed.

     

  • loading
  • [1]
    ZHANG Y, WANG C L, LAN Z K, et al. Review of thermal-hydraulic issues and studies of lead-based fast reactors[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109625. doi: 10.1016/j.rser.2019.109625
    [2]
    徐敬尧. 先进核反应堆用铅铋合金性能及纯净化技术研究[D]. 合肥: 中国科学技术大学,2013.
    [3]
    OECD/NEA Nuclear Science Committee. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermalhydraulics and technologies[M]. Paris: OECD/NEA Nuclear Science Committee, 2015.
    [4]
    BRISSONNEAU L, BEAUCHAMP F, MORIER O, et al. Oxygen control systems and impurity purification in LBE: learning from DEMETRA project[J]. Journal of Nuclear Materials, 2011, 415(3): 348-360. doi: 10.1016/j.jnucmat.2011.04.040
    [5]
    MARTYNOV P N, RACHKOV V I, ASKHADULLIN R S, et al. Analysis of the present status of lead and lead-bismuth coolant technology[J]. Atomic Energy, 2014, 116(4): 285-292. doi: 10.1007/s10512-014-9855-7
    [6]
    MALKOW T, STEINER H, MUSCHER H, et al. Mass transfer of iron impurities in LBE loops under non-isothermal flow conditions[J]. Journal of Nuclear Materials, 2004, 335(2): 199-203. doi: 10.1016/j.jnucmat.2004.07.021
    [7]
    KIKUCHI K, SAITO S, HAMAGUCHI D, et al. Ni-rich precipitates in a lead bismuth eutectic loop[J]. Journal of Nuclear Materials, 2010, 398(1-3): 104-108. doi: 10.1016/j.jnucmat.2009.10.018
    [8]
    GLADINEZ K, ROSSEEL K, LIM J, et al. Experimental investigation on the oxygen cold trapping mechanism in LBE-cooled systems[J]. Nuclear Engineering and Design, 2020, 364: 110664. doi: 10.1016/j.nucengdes.2020.110664
    [9]
    HEMANATH M G, MEIKANDAMURTHY C, KUMAR A A, et al. Theoretical and experimental performance analysis for cold trap design[J]. Nuclear Engineering and Design, 2010, 240(10): 2737-2744. doi: 10.1016/j.nucengdes.2010.06.022
    [10]
    胡绍洋. 电磁分离液态钢渣中金属液滴的实验研究[D]. 北京: 钢铁研究总院,2018.
    [11]
    GLADINEZ K, ROSSEEL K, LIM J, et al. Nucleation and growth of lead oxide particles in liquid lead-bismuth eutectic[J]. Physical Chemistry Chemical Physics, 2017, 19(40): 27593-27602. doi: 10.1039/C7CP05068B
    [12]
    SCHROER C, WEDEMEYER O, KONYS J. Gas/liquid oxygen-transfer to flowing lead alloys[J]. Nuclear Engineering and Design, 2011, 241(5): 1310-1318. doi: 10.1016/j.nucengdes.2010.06.047
    [13]
    常海龙. 控氧液态铅铋合金实验装置研究[D]. 兰州: 中国科学院大学(中国科学院近代物理研究所),2018.
    [14]
    李小波. 液态铅铋系统氧浓度控制技术研究[D]. 北京: 华北电力大学(北京),2022.
    [15]
    MARINO A. Numerical modeling of oxygen mass transfer in the MYRRHA system[D]. Belgian: Belgian Nuclear Research Centre, 2015.
    [16]
    赵云淦. 铅铋合金的固态氧控研究[D]. 北京: 华北电力大学(北京),2019.
    [17]
    LIM J, MANFREDI G, GAVRILOV S, et al. Control of dissolved oxygen in liquid LBE by electrochemical oxygen pumping[J]. Sensors and Actuators B: Chemical, 2014, 204: 388-392. doi: 10.1016/j.snb.2014.07.117
    [18]
    LIM J, MANFREDI G, ROSSEEL K, et al. Performance of electrochemical oxygen pump in a liquid lead-bismuth eutectic loop[J]. Journal of the Electrochemical Society, 2019, 166(6): E153-E158. doi: 10.1149/2.0711906jes
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(2)

    Article Metrics

    Article views (36) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return