Citation: | Feng Zhenyu, Liu Yapeng, Wang Bo, Zhang Dalin, Li Xinyu, Tian Wenxi, Qiu Suizheng, Su Guanghui. Investigation of Radial Thermal-Hydraulic Characteristics of Sodium Heated Once-Through Steam Generator[J]. Nuclear Power Engineering, 2025, 46(1): 73-82. doi: 10.13832/j.jnpe.2025.01.0073 |
[1] |
张福民,李继涛,申江坤,等. 浅谈第四代堆-钠冷快堆(SFR)的技术状况[J]. 中国设备工程,2023(7): 125-127.
|
[2] |
YOON J, KIM J P, KIM H Y, et al. Development of a computer code, ONCESG, for the thermal-hydraulic design of a once-through steam generator[J]. Journal of Nuclear Science and Technology, 2000, 37(5): 445-454. doi: 10.1080/18811248.2000.9714917
|
[3] |
TZANOS C P. A movable boundary model for once-through steam generator analysis[J]. Nuclear Technology, 1988, 82(1): 5-17. doi: 10.13182/NT88-A34113
|
[4] |
ABDALLA M A. A four-region, moving-boundary model of a once-through, helical-coil steam generator[J]. Annals of Nuclear Energy, 1994, 21(9): 541-562. doi: 10.1016/0306-4549(94)90078-7
|
[5] |
袁媛. 螺旋管式直流蒸汽发生器建模与仿真研究[D]. 哈尔滨: 哈尔滨工程大学,2014.
|
[6] |
黄晓津,冯元琨,郭人俊. HTR-10螺旋管直流蒸汽发生器实时动态模型[J]. 清华大学学报: 自然科学版,2000, 40(6): 88-90.
|
[7] |
朱景艳,张志俭,郭赟. 套管式直流蒸汽发生器动态实时仿真研究[J]. 原子能科学技术,2011, 45(8): 937-942.
|
[8] |
XU R S, ZHANG D L, TIAN W X, et al. Development of thermal hydraulic design code for SFR steam generators[J]. Nuclear Engineering and Design, 2019, 348: 46-55. doi: 10.1016/j.nucengdes.2019.04.009
|
[9] |
XU R S, ZHANG D L, TIAN W X, et al. Thermal-hydraulic analysis code development for sodium heated once-through steam generator[J]. Annals of Nuclear Energy, 2019, 127: 385-394. doi: 10.1016/j.anucene.2018.12.027
|
[10] |
XU R S, SONG P, ZHANG D L, et al. Numerical analysis on flow instability of parallel channels in steam generator for sodium‐cooled fast reactor[J]. International Journal of Energy Research, 2021, 45(8): 11943-11956. doi: 10.1002/er.5933
|
[11] |
肖常志,杨红义,张大林,等. 快堆钠-水蒸汽发生器热工水力稳态综合性能研究[J]. 原子能科学技术,2024, 58(2): 328-336.
|
[12] |
WANG B, FENG Z Y, CHEN Y C, et al. Optimization and improvement of sodium heated once-through steam generator transient analysis code based on the JFNK algorithm[J]. Energies, 2023, 16(1): 482. doi: 10.3390/en16010482
|
[13] |
COLEBROOK C F, WHITE C M. Experiments with fluid friction in roughened pipes[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1937, 161(906): 367-381.
|
[14] |
MIKITYUK K. Heat transfer to liquid metal: review of data and correlations for tube bundles[J]. Nuclear Engineering and Design, 2009, 239(4): 680-687. doi: 10.1016/j.nucengdes.2008.12.014
|
[15] |
SIEDER E N, TATE G E. Heat Transfer and pressure drop of liquids in tubes[J]. Industrial & Engineering Chemistry, 1936, 28(12): 1429-1435.
|
[16] |
CHEN J C. Correlation for boiling heat transfer to saturated fluids in convective flow[J]. Industrial & Engineering Chemistry Process Design and Development, 1966, 5(3): 322-329.
|
[17] |
THORN J R S, WALKER W M, FALLON T A, et al. Paper 6: boiling in sub-cooled water during flow up heated tubes or annuli[J]. Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, 1965, 180(3): 226-246. doi: 10.1243/PIME_CONF_1965_180_117_02
|